TU Darmstadt / ULB / TUbiblio

Improved cell adhesion under shear stress in PDMS microfluidic devices

Siddique, Asma ; Meckel, Tobias ; Stark, Robert W. ; Narayan, Suman (2017)
Improved cell adhesion under shear stress in PDMS microfluidic devices.
In: Colloids and Surfaces B-Biointerfaces, 150
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Microfluidic systems based on polydimethylsiloxane (PDMS) provide a versatile platform to study the mechanoresponse of cells in vitro. Under a shear flow, however, the stability of cells that were grown on physically adsorbed proteins is short lived, which limits long-term cell studies. To address this issue, we used (3-Aminopropyl)triethoxysilane (APTES) as a linker between PDMS and collagen. In micro-channels that were modified with APTES-anchored collagen, fibroblast cells demonstrated higher stability and better proliferation as compared to collagen that was physically adsorbed onto PDMS after oxygen plasma treatment. To assess the stability of the cellular adhesion, cells were forced in a shear flow until detachment. In devices with APTES-anchored collagen, cells showed better adhesion and proliferation at shear stresses between 11.6 and 93 dyn/cm2 as compared to devices with the adsorbed collagen coating where the first cellular detachment occurred already at a shear stress of 23 dyn/cm2. The APTES-attached collagen coating also contributed to an improved long-term cellular growth (observed for 48 h) at different shear stress levels (10–300 dyn/cm2). Attachment of collagen with the help of APTES thus is a very promising technique not only to modify the glass but also to modify the PDMS surfaces of microfluidic devices for mechanotransduction experiments.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Siddique, Asma ; Meckel, Tobias ; Stark, Robert W. ; Narayan, Suman
Art des Eintrags: Bibliographie
Titel: Improved cell adhesion under shear stress in PDMS microfluidic devices
Sprache: Englisch
Publikationsjahr: 1 Februar 2017
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Colloids and Surfaces B-Biointerfaces
Jahrgang/Volume einer Zeitschrift: 150
URL / URN: http://dx.doi.org/10.1016/j.colsurfb.2016.11.011
Kurzbeschreibung (Abstract):

Microfluidic systems based on polydimethylsiloxane (PDMS) provide a versatile platform to study the mechanoresponse of cells in vitro. Under a shear flow, however, the stability of cells that were grown on physically adsorbed proteins is short lived, which limits long-term cell studies. To address this issue, we used (3-Aminopropyl)triethoxysilane (APTES) as a linker between PDMS and collagen. In micro-channels that were modified with APTES-anchored collagen, fibroblast cells demonstrated higher stability and better proliferation as compared to collagen that was physically adsorbed onto PDMS after oxygen plasma treatment. To assess the stability of the cellular adhesion, cells were forced in a shear flow until detachment. In devices with APTES-anchored collagen, cells showed better adhesion and proliferation at shear stresses between 11.6 and 93 dyn/cm2 as compared to devices with the adsorbed collagen coating where the first cellular detachment occurred already at a shear stress of 23 dyn/cm2. The APTES-attached collagen coating also contributed to an improved long-term cellular growth (observed for 48 h) at different shear stress levels (10–300 dyn/cm2). Attachment of collagen with the help of APTES thus is a very promising technique not only to modify the glass but also to modify the PDMS surfaces of microfluidic devices for mechanotransduction experiments.

Freie Schlagworte: Microfluidics, Cell adhesion, Shear stress, APTES, PDMS, Surface modification
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Membrane Dynamics
11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente > A07: Raman-spektroskopische Untersuchung des Massetransports und des Konzentrationsgefälles in Gemischen
Profilbereiche
Profilbereiche > Thermo-Fluids & Interfaces
Hinterlegungsdatum: 03 Apr 2017 10:12
Letzte Änderung: 19 Sep 2019 05:59
PPN:
Sponsoren: A. S. acknowledges Deutscher Akademischer Austauschdienst (DAAD) and Higher Education Commission (HEC) Pakistan for the doctoral scholarship in Germany.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen