TU Darmstadt / ULB / TUbiblio

Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon

Vrankovic, D. ; Wissel, K. ; Graczyk-Zajac, M. ; Riedel, R. (2017)
Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon.
In: Solid State Ionics, 302
doi: 10.1016/j.ssi.2016.11.009
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this work, we present an easy and environmentally friendly approach to stabilize nanostructured, porous crystalline (Sitc) and amorphous (Sisa) silicon synthesized via magnesiothermic reduction. As matrix, fructose-derived carbon, polymer-derived SiOC ceramic or both, carbon and SiOC, are used. By means of X-ray diffraction and Raman spectroscopy it is found that the crystallinity of Sitc as well as the amorphous character of Sisa is preserved in the final composites. Embedding of crystalline silicon into carbon leads to high initial capacities of ~ 600–650 mAh·g− 1, but only the matrix consisting of carbon and SiOC results in a stable cycling behaviour over 50 cycles with a final capacity of 575 mAh·g− 1. All composites derived from amorphous Sisa show a stable cycling behaviour; the highest, stable capacity of ~ 500 mAh·g− 1 is observed when silicon is covered with carbon and SiOC.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Vrankovic, D. ; Wissel, K. ; Graczyk-Zajac, M. ; Riedel, R.
Art des Eintrags: Bibliographie
Titel: Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon
Sprache: Englisch
Publikationsjahr: April 2017
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Solid State Ionics
Jahrgang/Volume einer Zeitschrift: 302
DOI: 10.1016/j.ssi.2016.11.009
Kurzbeschreibung (Abstract):

In this work, we present an easy and environmentally friendly approach to stabilize nanostructured, porous crystalline (Sitc) and amorphous (Sisa) silicon synthesized via magnesiothermic reduction. As matrix, fructose-derived carbon, polymer-derived SiOC ceramic or both, carbon and SiOC, are used. By means of X-ray diffraction and Raman spectroscopy it is found that the crystallinity of Sitc as well as the amorphous character of Sisa is preserved in the final composites. Embedding of crystalline silicon into carbon leads to high initial capacities of ~ 600–650 mAh·g− 1, but only the matrix consisting of carbon and SiOC results in a stable cycling behaviour over 50 cycles with a final capacity of 575 mAh·g− 1. All composites derived from amorphous Sisa show a stable cycling behaviour; the highest, stable capacity of ~ 500 mAh·g− 1 is observed when silicon is covered with carbon and SiOC.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 17 Mär 2017 09:22
Letzte Änderung: 17 Mär 2017 09:22
PPN:
Sponsoren: We gratefully acknowledge the financial support of the German Research Foundation (DFG) SPP1473/JP8.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen