TU Darmstadt / ULB / TUbiblio

Electrochemical study of NiO nanosheets: toward the understanding of capacity fading

Kaspar, Jan ; Bazarjani, Mahdi Seifollahi ; Schitco, Cristina ; Gurlo, Aleksander ; Graczyk-Zajac, Magdalena ; Riedel, Ralf (2017)
Electrochemical study of NiO nanosheets: toward the understanding of capacity fading.
In: Journal of Materials Science, 52 (11)
doi: 10.1007/s10853-017-0885-0
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

NiO nanosheets are prepared by calcination of nickel hydroxide nanosheets, obtained by the hydrolysis of trans-bis(acetato-jO)bis(2-aminoethanol-j2 N,O)nickel(II) complex. BET analysis reveals the presence of a high specific surface area of 48 m2g-1 and a pore volume of 0.26 cm3g-1 after calcination at 400 �C. The two-dimensional NiO nanostructure undergoes a reversible lithium ion uptake and release revealing an initial unexpectedly high capacity of *1100 mAhg-1 at a cycling current of 400 mAg-1, exceeding the theoretical capacity of NiO (718 mAhg-1). We attribute this high storage capacity to the advantageous two-dimensional morphology of the sample, namely to the presence of agglomerates composed of NiO nanosheets, allowing a pronounced Li-ion storage through the insertion mechanism and by the formation of a polymer-like layer at the samples internal surfaces. However, after 20 cycles the recovered capacity diminishes rapidly due to the onset of Li-ion intercalation into NiO, which is found less reversible. In addition, an increase in the charge Transfer resistance and increase in the electrode polarization, measured by differential capacity, contribute to the analyzed capacity decay upon continuous cycling.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Kaspar, Jan ; Bazarjani, Mahdi Seifollahi ; Schitco, Cristina ; Gurlo, Aleksander ; Graczyk-Zajac, Magdalena ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Electrochemical study of NiO nanosheets: toward the understanding of capacity fading
Sprache: Englisch
Publikationsjahr: 10 Februar 2017
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Materials Science
Jahrgang/Volume einer Zeitschrift: 52
(Heft-)Nummer: 11
DOI: 10.1007/s10853-017-0885-0
Kurzbeschreibung (Abstract):

NiO nanosheets are prepared by calcination of nickel hydroxide nanosheets, obtained by the hydrolysis of trans-bis(acetato-jO)bis(2-aminoethanol-j2 N,O)nickel(II) complex. BET analysis reveals the presence of a high specific surface area of 48 m2g-1 and a pore volume of 0.26 cm3g-1 after calcination at 400 �C. The two-dimensional NiO nanostructure undergoes a reversible lithium ion uptake and release revealing an initial unexpectedly high capacity of *1100 mAhg-1 at a cycling current of 400 mAg-1, exceeding the theoretical capacity of NiO (718 mAhg-1). We attribute this high storage capacity to the advantageous two-dimensional morphology of the sample, namely to the presence of agglomerates composed of NiO nanosheets, allowing a pronounced Li-ion storage through the insertion mechanism and by the formation of a polymer-like layer at the samples internal surfaces. However, after 20 cycles the recovered capacity diminishes rapidly due to the onset of Li-ion intercalation into NiO, which is found less reversible. In addition, an increase in the charge Transfer resistance and increase in the electrode polarization, measured by differential capacity, contribute to the analyzed capacity decay upon continuous cycling.

Zusätzliche Informationen:

Dedicated to Dr. Mahdi Seifollahi Bazarjani. Mahdi Seifollahi Bazarjani: Deceased in February 2015.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 17 Mär 2017 09:13
Letzte Änderung: 17 Mär 2017 09:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen