TU Darmstadt / ULB / TUbiblio

Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3-0.25SrTiO3

Liu, Na ; Acosta, Matias ; Wang, Shuai ; Xu, Bai-Xiang ; Stark, Robert W. ; Dietz, Christian (2016)
Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3-0.25SrTiO3.
In: Scientific Reports, 6 (36910)
doi: 10.1038/srep36910
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Lead-free relaxor ferroelectrics that feature a core-shell microstructure provide an excellent electromechanical response. They even have the potential to replace the environmentally hazardous lead-zirconia-titanate (PZT) in large strain actuation applications. Although the dielectric properties of core-shell ceramics have been extensively investigated, their piezoelectric properties are not yet well understood. To unravel the interfacial core-shell interaction, we studied the relaxation behaviour of field-induced ferroelectric domains in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 (BNT-25ST), as a typical core-shell bulk material, using a piezoresponse force microscope. We found that after poling, lateral domains emerged at the core-shell interface and propagated to the shell region. Phase field simulations showed that the increased electrical potential beneath the core is responsible for the in-plane domain evolution. Our results imply that the field-induced domains act as pivotal points at the coherent heterophase core-shell interface, reinforcing the phase transition in the non-polar shell and thus promoting the giant strain.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Liu, Na ; Acosta, Matias ; Wang, Shuai ; Xu, Bai-Xiang ; Stark, Robert W. ; Dietz, Christian
Art des Eintrags: Bibliographie
Titel: Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3-0.25SrTiO3
Sprache: Englisch
Publikationsjahr: 14 November 2016
Verlag: Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 36910
DOI: 10.1038/srep36910
Kurzbeschreibung (Abstract):

Lead-free relaxor ferroelectrics that feature a core-shell microstructure provide an excellent electromechanical response. They even have the potential to replace the environmentally hazardous lead-zirconia-titanate (PZT) in large strain actuation applications. Although the dielectric properties of core-shell ceramics have been extensively investigated, their piezoelectric properties are not yet well understood. To unravel the interfacial core-shell interaction, we studied the relaxation behaviour of field-induced ferroelectric domains in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 (BNT-25ST), as a typical core-shell bulk material, using a piezoresponse force microscope. We found that after poling, lateral domains emerged at the core-shell interface and propagated to the shell region. Phase field simulations showed that the increased electrical potential beneath the core is responsible for the in-plane domain evolution. Our results imply that the field-induced domains act as pivotal points at the coherent heterophase core-shell interface, reinforcing the phase transition in the non-polar shell and thus promoting the giant strain.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Exzellenzinitiative
Exzellenzinitiative > Exzellenzcluster
Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften > Teilprojekt D6: Der Einfluss von Feld-Induzierten Phasenumwandlungen an der Blockierkraft in Blei-freien Ferroelektrika
Hinterlegungsdatum: 01 Dez 2016 07:11
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: N.L., R.W.S. and C.D. thank the Center of Smart Interfaces for their financial support., M.A. thanks the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 595/D6 “Electrical Fatigue in Functional Materials”., S.W. and B.X.X. appreciate the financial support from the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen