TU Darmstadt / ULB / TUbiblio

InverseI–VInjection Characteristics of ZnO Nanoparticle-Based Diodes

Mundt, Paul ; Vogel, Stefan ; Bonrad, Klaus ; Seggern, Heinz von (2016)
InverseI–VInjection Characteristics of ZnO Nanoparticle-Based Diodes.
In: ACS Applied Materials & Interfaces, 8 (31)
doi: 10.1021/acsami.6b04193
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Mundt, Paul ; Vogel, Stefan ; Bonrad, Klaus ; Seggern, Heinz von
Art des Eintrags: Bibliographie
Titel: InverseI–VInjection Characteristics of ZnO Nanoparticle-Based Diodes
Sprache: Englisch
Publikationsjahr: 10 August 2016
Verlag: AMER CHEMICAL SOC, NW, WASHINGTON, DC, USA
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Materials & Interfaces
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 31
DOI: 10.1021/acsami.6b04193
Kurzbeschreibung (Abstract):

Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

Freie Schlagworte: metal oxides, ZnO, nanoparticles, inverse I-V, diode; tip injection, tunneling
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektronische Materialeigenschaften
Hinterlegungsdatum: 18 Nov 2016 11:52
Letzte Änderung: 13 Aug 2021 14:08
PPN:
Sponsoren: Paul Mundt received funding from the Merck KGaA and the Helmholtz Virtual Institute (VH-VI-530). Klaus Bonrad received funding from Merck KGaA.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen