Jekel, Dominic ; Clerkin, Eoin ; Hagedorn, Peter (2016)
Robust Damping in Self-Excited Mechanical Systems.
In: Proceedings in Applied Mathematics and Mechanics (PAMM), 16 (1)
doi: 10.1002/pamm.201610336
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
A technique to optimize the stability of a general mechanical system is outlined. The method relies on decomposing the damping matrix into several component matrices, which may have some special structure or physical relevance. An optimization problem can then be formulated where the ratio of these are varied to either stabilize or make more stable the equilibrium state subject to sensible constraints. For the purpose of this study, we define a system to be more stable if its eigenvalue with largest real part is as negative as possible. The technique is demonstrated by applying it to an introduced non-dimensionalized variant of a known minimal wobbling disc brake model. In this case, it is shown to be beneficial to shift some damping from the disc to the pins for a system optimized for stability.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2016 |
Autor(en): | Jekel, Dominic ; Clerkin, Eoin ; Hagedorn, Peter |
Art des Eintrags: | Bibliographie |
Titel: | Robust Damping in Self-Excited Mechanical Systems |
Sprache: | Englisch |
Publikationsjahr: | Oktober 2016 |
Verlag: | John Wiley and Sons |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Proceedings in Applied Mathematics and Mechanics (PAMM) |
Jahrgang/Volume einer Zeitschrift: | 16 |
(Heft-)Nummer: | 1 |
DOI: | 10.1002/pamm.201610336 |
URL / URN: | http://onlinelibrary.wiley.com/doi/10.1002/pamm.201610336/fu... |
Kurzbeschreibung (Abstract): | A technique to optimize the stability of a general mechanical system is outlined. The method relies on decomposing the damping matrix into several component matrices, which may have some special structure or physical relevance. An optimization problem can then be formulated where the ratio of these are varied to either stabilize or make more stable the equilibrium state subject to sensible constraints. For the purpose of this study, we define a system to be more stable if its eigenvalue with largest real part is as negative as possible. The technique is demonstrated by applying it to an introduced non-dimensionalized variant of a known minimal wobbling disc brake model. In this case, it is shown to be beneficial to shift some damping from the disc to the pins for a system optimized for stability. |
Zusätzliche Informationen: | Joint Annual Meeting of DMV and GAMM, Braunschweig, Germany, 7-11 March 2016 |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Dynamik und Schwingungen Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) Zentrale Einrichtungen |
Hinterlegungsdatum: | 01 Nov 2016 07:58 |
Letzte Änderung: | 18 Jun 2024 12:29 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Robust Damping in Self-Excited Mechanical Systems. (deposited 23 Mär 2016 13:03)
- Robust Damping in Self-Excited Mechanical Systems. (deposited 01 Nov 2016 07:58) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |