TU Darmstadt / ULB / TUbiblio

The Minimum Feasible Tileset Problem

Disser, Y. ; Kratsch, S. ; Sorge, M. (2014)
The Minimum Feasible Tileset Problem.
12th Workshop on Approximation and Online Algorithms (WAOA 2014). Wrolaw, Poland (11.09.2014-12.09.2014)
doi: 10.1007/978-3-319-18263-6_13
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We consider the Minimum Feasible Tileset problem: Given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is NP-complete even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Disser, Y. ; Kratsch, S. ; Sorge, M.
Art des Eintrags: Bibliographie
Titel: The Minimum Feasible Tileset Problem
Sprache: Englisch
Publikationsjahr: 2014
Verlag: Springer
Buchtitel: Approximation and Online Algorithms
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 8952
Veranstaltungstitel: 12th Workshop on Approximation and Online Algorithms (WAOA 2014)
Veranstaltungsort: Wrolaw, Poland
Veranstaltungsdatum: 11.09.2014-12.09.2014
DOI: 10.1007/978-3-319-18263-6_13
Kurzbeschreibung (Abstract):

We consider the Minimum Feasible Tileset problem: Given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is NP-complete even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols.

Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Discrete Optimization
Hinterlegungsdatum: 14 Okt 2016 07:28
Letzte Änderung: 18 Aug 2022 12:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen