Disser, Y. ; Kratsch, S. ; Sorge, M. (2014)
The Minimum Feasible Tileset Problem.
12th Workshop on Approximation and Online Algorithms (WAOA 2014). Wrolaw, Poland (11.09.2014-12.09.2014)
doi: 10.1007/978-3-319-18263-6_13
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We consider the Minimum Feasible Tileset problem: Given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is NP-complete even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2014 |
Autor(en): | Disser, Y. ; Kratsch, S. ; Sorge, M. |
Art des Eintrags: | Bibliographie |
Titel: | The Minimum Feasible Tileset Problem |
Sprache: | Englisch |
Publikationsjahr: | 2014 |
Verlag: | Springer |
Buchtitel: | Approximation and Online Algorithms |
Reihe: | Lecture Notes in Computer Science |
Band einer Reihe: | 8952 |
Veranstaltungstitel: | 12th Workshop on Approximation and Online Algorithms (WAOA 2014) |
Veranstaltungsort: | Wrolaw, Poland |
Veranstaltungsdatum: | 11.09.2014-12.09.2014 |
DOI: | 10.1007/978-3-319-18263-6_13 |
Kurzbeschreibung (Abstract): | We consider the Minimum Feasible Tileset problem: Given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is NP-complete even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols. |
Fachbereich(e)/-gebiet(e): | Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Optimierung 04 Fachbereich Mathematik > Optimierung > Discrete Optimization |
Hinterlegungsdatum: | 14 Okt 2016 07:28 |
Letzte Änderung: | 18 Aug 2022 12:28 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |