Odathuparambil, Sonja (2016)
Ambient Spline Approximation on Manifolds.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Approximation in $\R^d$ is already well studied while approximation on manifolds still leads to difficulties. The present thesis introduces three approximation methods on compact manifolds. The manifold is considered as a submanifold embedded in $\R^d$ and the problem is extended to some ambient domain of the submanifold.
The first method returns $C^k$-approximations, $k \in \N$, of given functions on smooth compact submanifolds. We prove that the method shows optimal approximation behaviour for submanifolds of codimension one. The second and the third method approximate solutions of linear intrinsic PDEs. After extending the problem to some domain around the submanifold boundary conditions are added. The problem is solved by using the Finite Element Method. Numerical test confirm the ideas of the methods.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2016 | ||||
Autor(en): | Odathuparambil, Sonja | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Ambient Spline Approximation on Manifolds | ||||
Sprache: | Englisch | ||||
Referenten: | Reif, Prof. Dr. Ulrich ; Davydov, Prof. Dr. Oleg | ||||
Publikationsjahr: | 2016 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 13 Juli 2016 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/5660 | ||||
Kurzbeschreibung (Abstract): | Approximation in $\R^d$ is already well studied while approximation on manifolds still leads to difficulties. The present thesis introduces three approximation methods on compact manifolds. The manifold is considered as a submanifold embedded in $\R^d$ and the problem is extended to some ambient domain of the submanifold. The first method returns $C^k$-approximations, $k \in \N$, of given functions on smooth compact submanifolds. We prove that the method shows optimal approximation behaviour for submanifolds of codimension one. The second and the third method approximate solutions of linear intrinsic PDEs. After extending the problem to some domain around the submanifold boundary conditions are added. The problem is solved by using the Finite Element Method. Numerical test confirm the ideas of the methods. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | manifold, spline, approximation, PDE, finite elements | ||||
Schlagworte: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-56604 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik > Geometrie und Approximation 04 Fachbereich Mathematik |
||||
Hinterlegungsdatum: | 25 Sep 2016 19:55 | ||||
Letzte Änderung: | 25 Sep 2016 19:55 | ||||
PPN: | |||||
Referenten: | Reif, Prof. Dr. Ulrich ; Davydov, Prof. Dr. Oleg | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 13 Juli 2016 | ||||
Schlagworte: |
|
||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |