TU Darmstadt / ULB / TUbiblio

Scalable inference using PMCMC and parallel tempering for high-throughput measurements of biomolecular reaction networks

Bronstein, L. ; Koeppl, H. (2016)
Scalable inference using PMCMC and parallel tempering for high-throughput measurements of biomolecular reaction networks.
In: 2016 IEEE 55th Conference on Decision and Control (CDC)
doi: 10.1109/CDC.2016.7798361
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

Inferring quantities of interest from fluorescence microscopy time-lapse measurements of cells is a key step in parameterizing models of biomolecular reaction networks, and also in comparing different models. In this article, we propose a method which performs inference in continuous-time Markov chain models and thus takes into account the discrete nature of molecule counts. It targets the important situation of inference from many measured cells. Our method, a complement to a recently proposed approach, is based on particle Markov chain Monte Carlo and can be argued to have improved scaling behavior as the number of measured cells increases. We numerically demonstrate the performance of our algorithm on simulated data.

Typ des Eintrags: Buchkapitel
Erschienen: 2016
Autor(en): Bronstein, L. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Scalable inference using PMCMC and parallel tempering for high-throughput measurements of biomolecular reaction networks
Sprache: Englisch
Publikationsjahr: Dezember 2016
Ort: Las Vegas
Verlag: IEEE
Buchtitel: 2016 IEEE 55th Conference on Decision and Control (CDC)
DOI: 10.1109/CDC.2016.7798361
URL / URN: http://ieeexplore.ieee.org/document/7798361/#full-text-secti...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Inferring quantities of interest from fluorescence microscopy time-lapse measurements of cells is a key step in parameterizing models of biomolecular reaction networks, and also in comparing different models. In this article, we propose a method which performs inference in continuous-time Markov chain models and thus takes into account the discrete nature of molecule counts. It targets the important situation of inference from many measured cells. Our method, a complement to a recently proposed approach, is based on particle Markov chain Monte Carlo and can be argued to have improved scaling behavior as the number of measured cells increases. We numerically demonstrate the performance of our algorithm on simulated data.

Zusätzliche Informationen:

Conference: 12-14 December 2016, Las Vegas, NV, USA

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 02 Sep 2016 06:19
Letzte Änderung: 29 Mai 2024 07:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen