Alex, Tristan (2016)
Minimal Graphs in Riemannian Fibrations.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In this dissertation, minimal and constant mean curvature surface theory in 3-dimensional Riemannian fibrations are studied.
In the main part of the thesis, new complete, embedded minimal surfaces in the 3-sphere are constructed by solving a Plateau problem with respect to a suitable Jordan curve consisting entirely of horizontal geodesic arcs and extending this solution by means of Schwarz reflection.
Additionally, an elementary proof for the vertical half-space theorem in Heisenberg space is given by finding a subsolution of the minimal surface equation.
Finally, projections of constant mean curvature multigraphs are characterized: they are locally contained to one side of complete curves with constant geodesic curvature.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2016 | ||||
Autor(en): | Alex, Tristan | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Minimal Graphs in Riemannian Fibrations | ||||
Sprache: | Englisch | ||||
Referenten: | Große-Brauckmann, Prof. Dr. Karsten ; Fröhlich, Prof. Dr. Steffen | ||||
Publikationsjahr: | 19 Mai 2016 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 6 Juli 2016 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/5571 | ||||
Kurzbeschreibung (Abstract): | In this dissertation, minimal and constant mean curvature surface theory in 3-dimensional Riemannian fibrations are studied. In the main part of the thesis, new complete, embedded minimal surfaces in the 3-sphere are constructed by solving a Plateau problem with respect to a suitable Jordan curve consisting entirely of horizontal geodesic arcs and extending this solution by means of Schwarz reflection. Additionally, an elementary proof for the vertical half-space theorem in Heisenberg space is given by finding a subsolution of the minimal surface equation. Finally, projections of constant mean curvature multigraphs are characterized: they are locally contained to one side of complete curves with constant geodesic curvature. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | Minimal surfaces, constant mean curvature surfaces, maximum principle, Plateau, reflection principles, Riemannian fibration, model geometry | ||||
URN: | urn:nbn:de:tuda-tuprints-55719 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik > Geometrie und Approximation 04 Fachbereich Mathematik |
||||
Hinterlegungsdatum: | 17 Jul 2016 19:55 | ||||
Letzte Änderung: | 17 Jul 2016 19:55 | ||||
PPN: | |||||
Referenten: | Große-Brauckmann, Prof. Dr. Karsten ; Fröhlich, Prof. Dr. Steffen | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 6 Juli 2016 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |