TU Darmstadt / ULB / TUbiblio

Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium–nickel–cobalt–manganese-oxide cathode ceramics for lithium ion batteries

Riekehr, Lars ; Liu, Jinlong ; Schwarz, Björn ; Sigel, Florian ; Kerkamm, Ingo ; Xia, Yongyao ; Ehrenberg, Helmut (2016)
Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium–nickel–cobalt–manganese-oxide cathode ceramics for lithium ion batteries.
In: Journal of Power Sources, 306
doi: 10.1016/j.jpowsour.2015.11.082
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Structural and electrochemical (EC) data of five different xLi2MnO3:(1-x)Li(Ni1/3Co1/3Mn1/3)O2 cathode ceramics are presented. The aim of this work is to highlight the nano structure of this material class, next to the choice of right composition, as the key to anomalously high discharge capacities > 250 mAhg�1. Therefore, the pristine nano composite structure of five different samples has been analyzed extensively by transition electron microscopy with respect to Li2MnO3 domain size, shape and dispersion. DIFFaX simulations and Rietveld refinements to synchrotron X-Ray diffraction patterns are used to confirm the TEM results with a statistically reliable bulk method. The EC characteristics of the first cycle have been evaluated with respect to an EC active Li2MnO3 component. By comparing the EC features of materials with x ¼ 0.3, x ¼ 0.5 and x ¼ 0.7, it is evident that a composition of x ¼ 0.5 is the most promising. To point out the impact of the pristine nano structure on the EC performance, three samples with x ¼ 0.5 but considerable different nano domain arrangement, are compared. A strong influence has been found, with the highest discharge capacities for nano composites with small and evenly dispersed Li2MnO3 domains. © 2015 Elsevier B.V. All rights reserved.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Riekehr, Lars ; Liu, Jinlong ; Schwarz, Björn ; Sigel, Florian ; Kerkamm, Ingo ; Xia, Yongyao ; Ehrenberg, Helmut
Art des Eintrags: Bibliographie
Titel: Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium–nickel–cobalt–manganese-oxide cathode ceramics for lithium ion batteries
Sprache: Englisch
Publikationsjahr: 2016
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Power Sources
Jahrgang/Volume einer Zeitschrift: 306
DOI: 10.1016/j.jpowsour.2015.11.082
Kurzbeschreibung (Abstract):

Structural and electrochemical (EC) data of five different xLi2MnO3:(1-x)Li(Ni1/3Co1/3Mn1/3)O2 cathode ceramics are presented. The aim of this work is to highlight the nano structure of this material class, next to the choice of right composition, as the key to anomalously high discharge capacities > 250 mAhg�1. Therefore, the pristine nano composite structure of five different samples has been analyzed extensively by transition electron microscopy with respect to Li2MnO3 domain size, shape and dispersion. DIFFaX simulations and Rietveld refinements to synchrotron X-Ray diffraction patterns are used to confirm the TEM results with a statistically reliable bulk method. The EC characteristics of the first cycle have been evaluated with respect to an EC active Li2MnO3 component. By comparing the EC features of materials with x ¼ 0.3, x ¼ 0.5 and x ¼ 0.7, it is evident that a composition of x ¼ 0.5 is the most promising. To point out the impact of the pristine nano structure on the EC performance, three samples with x ¼ 0.5 but considerable different nano domain arrangement, are compared. A strong influence has been found, with the highest discharge capacities for nano composites with small and evenly dispersed Li2MnO3 domains. © 2015 Elsevier B.V. All rights reserved.

Freie Schlagworte: TEM, Li-rich NCM, Li-ion battery, DIFFaX simulation, Synchrotron XRD
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Erneuerbare Energien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 20 Jun 2016 10:58
Letzte Änderung: 20 Jun 2016 10:58
PPN:
Sponsoren: Financial support from the Deutsche Forschungsgemeinschaft DFG within the Reserach Collaborative Centre SFB 595 “Electrical Fatigue in Functional Materials” (transfer project T3) is gratefully acknowledged.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen