Vrzina, Miroslav (2016)
Constant Mean Curvature Annuli in Homogeneous Manifolds.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In this thesis we construct constant mean curvature annuli in homogeneous manifolds. These annuli generalise cylinders and unduloids in Euclidean space.
In the first part we show existence of cylinders in various homogeneous manifolds, for example in Sol or in PSL(2,R). These cylinders are translationally invariant and thus they are solutions of an ordinary differential equation. We use a geometric approach to discuss these equations.
In the second part we study the existence problem for tilted unduloids in the product of the hyperbolic plane and the real line. Here we have a proper partial differential equation at hand. We reduce this existence problem to a uniqueness problem for minimal annuli bounded by linked geodesic circles in the Berger spheres.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2016 | ||||
Autor(en): | Vrzina, Miroslav | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Constant Mean Curvature Annuli in Homogeneous Manifolds | ||||
Sprache: | Englisch | ||||
Referenten: | Große-Brauckmann, Prof. Dr. Karsten ; Schneider, PD Dr. Matthias | ||||
Publikationsjahr: | 2016 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 22 April 2016 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/5444 | ||||
Kurzbeschreibung (Abstract): | In this thesis we construct constant mean curvature annuli in homogeneous manifolds. These annuli generalise cylinders and unduloids in Euclidean space. In the first part we show existence of cylinders in various homogeneous manifolds, for example in Sol or in PSL(2,R). These cylinders are translationally invariant and thus they are solutions of an ordinary differential equation. We use a geometric approach to discuss these equations. In the second part we study the existence problem for tilted unduloids in the product of the hyperbolic plane and the real line. Here we have a proper partial differential equation at hand. We reduce this existence problem to a uniqueness problem for minimal annuli bounded by linked geodesic circles in the Berger spheres. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-54440 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik > Geometrie und Approximation 04 Fachbereich Mathematik |
||||
Hinterlegungsdatum: | 22 Mai 2016 19:55 | ||||
Letzte Änderung: | 22 Mai 2016 19:55 | ||||
PPN: | |||||
Referenten: | Große-Brauckmann, Prof. Dr. Karsten ; Schneider, PD Dr. Matthias | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 22 April 2016 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |