TU Darmstadt / ULB / TUbiblio

Multiferroic Clusters: A New Perspective for Relaxor-Type Room-Temperature Multiferroics

Henrichs, Leonard F. ; Cespedes, Oscar ; Bennett, James ; Landers, Joachim ; Salamon, Soma ; Heuser, Christian ; Hansen, Thomas ; Helbig, Tim ; Gutfleisch, Oliver ; Lupascu, Doru C. ; Wende, Heiko ; Kleemann, Wolfgang ; Bell, Andrew J. (2016)
Multiferroic Clusters: A New Perspective for Relaxor-Type Room-Temperature Multiferroics.
In: Advanced Functional Materials, 26 (13)
doi: 10.1002/adfm.201503335
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Multiferroics are promising for sensor and memory applications, but despite all efforts invested in their research no single-phase material displaying both ferroelectricity and large magnetization at room-temperature has hitherto been reported. This situation has substantially been improved in the novel relaxor ferroelectric single-phase (BiFe0.9Co0.1O3)(0.4)-(Bi1/2K1/2TiO3)(0.6), where polar nanoregions (PNR) transform into static-PNR as evidenced by piezoresponse force microscopy (PFM) and simultaneously enable congruent multiferroic clusters (MFC) to emerge from inherent strongly magnetic Bi(Fe,Co)O-3 rich regions as verified by magnetic force microscopy (MFM) and secondary ion mass spectrometry. The material's exceptionally large Neel temperature T-N = 670 +/- 10 K, as found by neutron diffraction, is proposed to be a consequence of ferrimagnetic order in MFC. On these MFC, exceptionally large direct and converse magnetoelectric (ME) coupling coefficients, approximate to 1.0 x 10(-5) s m(-1) at room-temperature, are measured by PFM and MFM, respectively. It is expected that the non-ergodic relaxor properties which are governed by the Bi1/2K1/2TiO3 component to play a vital role in the strong ME coupling, by providing an electrically and mechanically flexible environment to MFC. This new class of non-ergodic relaxor multiferroics bears great potential for applications. Especially the prospect of a ME nanodot storage device seems appealing.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Henrichs, Leonard F. ; Cespedes, Oscar ; Bennett, James ; Landers, Joachim ; Salamon, Soma ; Heuser, Christian ; Hansen, Thomas ; Helbig, Tim ; Gutfleisch, Oliver ; Lupascu, Doru C. ; Wende, Heiko ; Kleemann, Wolfgang ; Bell, Andrew J.
Art des Eintrags: Bibliographie
Titel: Multiferroic Clusters: A New Perspective for Relaxor-Type Room-Temperature Multiferroics
Sprache: Englisch
Publikationsjahr: 5 April 2016
Verlag: WILEY-V C H VERLAG GMBH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Functional Materials
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 13
DOI: 10.1002/adfm.201503335
Kurzbeschreibung (Abstract):

Multiferroics are promising for sensor and memory applications, but despite all efforts invested in their research no single-phase material displaying both ferroelectricity and large magnetization at room-temperature has hitherto been reported. This situation has substantially been improved in the novel relaxor ferroelectric single-phase (BiFe0.9Co0.1O3)(0.4)-(Bi1/2K1/2TiO3)(0.6), where polar nanoregions (PNR) transform into static-PNR as evidenced by piezoresponse force microscopy (PFM) and simultaneously enable congruent multiferroic clusters (MFC) to emerge from inherent strongly magnetic Bi(Fe,Co)O-3 rich regions as verified by magnetic force microscopy (MFM) and secondary ion mass spectrometry. The material's exceptionally large Neel temperature T-N = 670 +/- 10 K, as found by neutron diffraction, is proposed to be a consequence of ferrimagnetic order in MFC. On these MFC, exceptionally large direct and converse magnetoelectric (ME) coupling coefficients, approximate to 1.0 x 10(-5) s m(-1) at room-temperature, are measured by PFM and MFM, respectively. It is expected that the non-ergodic relaxor properties which are governed by the Bi1/2K1/2TiO3 component to play a vital role in the strong ME coupling, by providing an electrically and mechanically flexible environment to MFC. This new class of non-ergodic relaxor multiferroics bears great potential for applications. Especially the prospect of a ME nanodot storage device seems appealing.

Freie Schlagworte: magnetic force microscopy, magnetoelectric, multiferroic cluster, multiferroics, piezoresponse force microscopy
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 11 Mai 2016 12:39
Letzte Änderung: 11 Mai 2016 12:39
PPN:
Sponsoren: L.F.H acknowledges project funding by the European Commission through the ITN NANOMOTION (PITN-GA-2011-290158)., O.C. acknowledges grant EP/K00512X/1 which enabled SQUID-VSM measurements., D.C.L. and H.W. thank the Deutsche Forschungsgemeinschaft (DFG) for partial support through Forschergruppe 1509, "Ferroische Funktionsmaterialien" (Lu729/12 and WE2623/13-2)., H.W., J.L., and S.S. thank the Deutsche Forschungsgemeinschaft (DFG) for partial support through Schwerpunktprogramm 1681, Feldgesteuerte Partikel-Matrix-Wechselwirkungen (WE2623/7-1), and Stiftung Mercator (MERCUR)., Note: The Acknowledgements were corrected on April 5, 2016.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen