TU Darmstadt / ULB / TUbiblio

Improved approaches to the exact solution of the machine covering problem

Walter, Rico ; Wirth, Martin ; Lawrinenko, Alexander (2017)
Improved approaches to the exact solution of the machine covering problem.
In: Journal of Scheduling, 20
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

For the basic problem of scheduling a set of n independent jobs on a set of m identical parallel machines with the objective of maximizing the minimum machine completion time---also referred to as machine covering---we propose a new exact branch-and-bound algorithm. Its most distinctive components are a different symmetry-breaking solution representation, enhanced lower and upper bounds, and effective novel dominance criteria derived from structural patterns of optimal schedules. Results of a comprehensive computational study conducted on benchmark instances attest to the effectiveness of our approach, particularly for small ratios of n to m.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Walter, Rico ; Wirth, Martin ; Lawrinenko, Alexander
Art des Eintrags: Bibliographie
Titel: Improved approaches to the exact solution of the machine covering problem
Sprache: Deutsch
Publikationsjahr: 2017
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Scheduling
Jahrgang/Volume einer Zeitschrift: 20
URL / URN: http://dx.doi.org/10.1007/s10951-016-0477-x
Kurzbeschreibung (Abstract):

For the basic problem of scheduling a set of n independent jobs on a set of m identical parallel machines with the objective of maximizing the minimum machine completion time---also referred to as machine covering---we propose a new exact branch-and-bound algorithm. Its most distinctive components are a different symmetry-breaking solution representation, enhanced lower and upper bounds, and effective novel dominance criteria derived from structural patterns of optimal schedules. Results of a comprehensive computational study conducted on benchmark instances attest to the effectiveness of our approach, particularly for small ratios of n to m.

Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Management Science / Operations Research
01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
Hinterlegungsdatum: 28 Apr 2016 12:41
Letzte Änderung: 15 Jun 2020 08:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen