Walter, Rico ; Wirth, Martin ; Lawrinenko, Alexander (2017)
Improved approaches to the exact solution of the machine covering problem.
In: Journal of Scheduling, 20
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
For the basic problem of scheduling a set of n independent jobs on a set of m identical parallel machines with the objective of maximizing the minimum machine completion time---also referred to as machine covering---we propose a new exact branch-and-bound algorithm. Its most distinctive components are a different symmetry-breaking solution representation, enhanced lower and upper bounds, and effective novel dominance criteria derived from structural patterns of optimal schedules. Results of a comprehensive computational study conducted on benchmark instances attest to the effectiveness of our approach, particularly for small ratios of n to m.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2017 |
Autor(en): | Walter, Rico ; Wirth, Martin ; Lawrinenko, Alexander |
Art des Eintrags: | Bibliographie |
Titel: | Improved approaches to the exact solution of the machine covering problem |
Sprache: | Deutsch |
Publikationsjahr: | 2017 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Scheduling |
Jahrgang/Volume einer Zeitschrift: | 20 |
URL / URN: | http://dx.doi.org/10.1007/s10951-016-0477-x |
Kurzbeschreibung (Abstract): | For the basic problem of scheduling a set of n independent jobs on a set of m identical parallel machines with the objective of maximizing the minimum machine completion time---also referred to as machine covering---we propose a new exact branch-and-bound algorithm. Its most distinctive components are a different symmetry-breaking solution representation, enhanced lower and upper bounds, and effective novel dominance criteria derived from structural patterns of optimal schedules. Results of a comprehensive computational study conducted on benchmark instances attest to the effectiveness of our approach, particularly for small ratios of n to m. |
Fachbereich(e)/-gebiet(e): | 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Management Science / Operations Research 01 Fachbereich Rechts- und Wirtschaftswissenschaften 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete |
Hinterlegungsdatum: | 28 Apr 2016 12:41 |
Letzte Änderung: | 15 Jun 2020 08:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |