Schuhmann, Rolf ; Weiland, Thomas (1998)
A Stable Interpolation Technique for FDTD on Nonorthogonal Grids.
In: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 11 (6)
doi: 10.1002/(SICI)1099-1204(199811/12)11:6<299::AID-JNM314>3.0.CO;2-A
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The application of the FDTD algorithm on generalized non-orthogonal meshes, following the basic ideas of Holland (1983), has been investigated by many authors for several years now, and detailed dispersion analysis as well as convergence studies have been published. Already in 1992 also a general stability criterion was given for the time integration using the standard leap-frog scheme (Lee et al.). Many authors, however, still propose some damped time stepping algorithms to work around unexpected instabilities in the discretization method. In this paper the origin of this type of instability is revealed, and a technique to obtain a stable discretization of Maxwell's equations on non-orthogonal grids is proposed. To obtain more insight into the stability properties of the method, it is reformulated according to the matrix–vector notation of the Finite Integration Technique.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 1998 |
Autor(en): | Schuhmann, Rolf ; Weiland, Thomas |
Art des Eintrags: | Bibliographie |
Titel: | A Stable Interpolation Technique for FDTD on Nonorthogonal Grids |
Sprache: | Englisch |
Publikationsjahr: | November 1998 |
Verlag: | John Wiley & Sons |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal of Numerical Modelling: Electronic Networks, Devices and Fields |
Jahrgang/Volume einer Zeitschrift: | 11 |
(Heft-)Nummer: | 6 |
DOI: | 10.1002/(SICI)1099-1204(199811/12)11:6<299::AID-JNM314>3.0.CO;2-A |
Kurzbeschreibung (Abstract): | The application of the FDTD algorithm on generalized non-orthogonal meshes, following the basic ideas of Holland (1983), has been investigated by many authors for several years now, and detailed dispersion analysis as well as convergence studies have been published. Already in 1992 also a general stability criterion was given for the time integration using the standard leap-frog scheme (Lee et al.). Many authors, however, still propose some damped time stepping algorithms to work around unexpected instabilities in the discretization method. In this paper the origin of this type of instability is revealed, and a technique to obtain a stable discretization of Maxwell's equations on non-orthogonal grids is proposed. To obtain more insight into the stability properties of the method, it is reformulated according to the matrix–vector notation of the Finite Integration Technique. |
Zusätzliche Informationen: | TEMF-Pub-DB TEMF000252 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) |
Hinterlegungsdatum: | 14 Mär 2016 16:33 |
Letzte Änderung: | 20 Jul 2023 11:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |