Gamrath, Gerald ; Fischer, Tobias ; Gally, Tristan ; Gleixner, Ambros M. ; Hendel, Gregor ; Koch, Thorsten ; Maher, Stephen J. ; Miltenberger, Matthias ; Müller, Benjamin ; Pfetsch, Marc E. ; Puchert, Christian ; Rehfeldt, Daniel ; Schenker, Sebastian ; Schwarz, Robert ; Serrano, Felipe ; Shinano, Yuji ; Vigerske, Stefan ; Wenninger, Dieter ; Winkler, Michael ; Witt, Jonas T. ; Witzig, Jakob (2016)
The SCIP Optimization Suite 3.2.
Report, Bibliographie
Kurzbeschreibung (Abstract)
The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers.
This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2016 |
Autor(en): | Gamrath, Gerald ; Fischer, Tobias ; Gally, Tristan ; Gleixner, Ambros M. ; Hendel, Gregor ; Koch, Thorsten ; Maher, Stephen J. ; Miltenberger, Matthias ; Müller, Benjamin ; Pfetsch, Marc E. ; Puchert, Christian ; Rehfeldt, Daniel ; Schenker, Sebastian ; Schwarz, Robert ; Serrano, Felipe ; Shinano, Yuji ; Vigerske, Stefan ; Wenninger, Dieter ; Winkler, Michael ; Witt, Jonas T. ; Witzig, Jakob |
Art des Eintrags: | Bibliographie |
Titel: | The SCIP Optimization Suite 3.2 |
Sprache: | Englisch |
Publikationsjahr: | 26 Februar 2016 |
Ort: | Berlin |
Verlag: | ZIB |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | ZIB-Report 15-60 |
Reihe: | ZIB-Report |
Band einer Reihe: | 15-60 |
URL / URN: | urn:nbn:de:0297-zib-57675 |
Kurzbeschreibung (Abstract): | The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs. |
Zusätzliche Informationen: | ISSN 1438-0064 |
Fachbereich(e)/-gebiet(e): | DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Optimierung Zentrale Einrichtungen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus |
Hinterlegungsdatum: | 08 Mär 2016 10:42 |
Letzte Änderung: | 30 Aug 2024 08:06 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |