TU Darmstadt / ULB / TUbiblio

Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions

Brüller, Sebastian ; Liang, Hai-Wei ; Kramm, Ulrike I. ; Krumpfer, Joseph W. ; Feng, Xinliang ; Müllen, Klaus (2015)
Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions.
In: Journal of Materials Chemistry A, 3 (47)
doi: 10.1039/C5TA06309D
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The development of efficient and stable electrocatalysts on the basis of non-precious metals (Co, Fe) is considered as one of the most promising routes to replace expensive and susceptible platinum as the oxygen reduction reaction (ORR) catalyst. Here we report a synthetic strategy for the precursor controlled, template-free preparation of novel mono- (Fe; Co) and bimetallic (Fe/Co) nitrogen-doped porous carbons and their electrocatalytic performance towards the ORR. The precursors are composed of metal–porphyrin based conjugated microporous polymers (M-CMPs with M = Fe; Co; Fe/Co) derived from polymerization of metalloporphyrins by the Suzuki polycondensation reaction, which enables the synthesis of bimetallic polymers with alternating metal–porphyrin units for the preparation of carbon-based catalysts with homogenously distributed CoN4 and FeN4 centres. Subsequent pyrolysis of the networks reveals the key role of pre-morphology and network composition on the active sites. 57Fe-Mössbauer spectroscopy was conducted on iron catalysts (Fe; Fe/Co) to determine the coordination of Fe within the N-doped carbon matrix and the catalytic activity-enhancing shift in electron density. In acidic media the bimetallic catalyst demonstrates a synergetic effect for cobalt and iron active sites, mainly through a 4-electron transfer process, achieving an onset potential of 0.88 V (versus a reversible hydrogen electrode) and a half-wave potential of 0.78 V, which is only 0.06 V less than that of the state-of-the-art Pt/C catalyst.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Brüller, Sebastian ; Liang, Hai-Wei ; Kramm, Ulrike I. ; Krumpfer, Joseph W. ; Feng, Xinliang ; Müllen, Klaus
Art des Eintrags: Bibliographie
Titel: Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions
Sprache: Englisch
Publikationsjahr: 21 Dezember 2015
Verlag: The Royal Society of Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Materials Chemistry A
Jahrgang/Volume einer Zeitschrift: 3
(Heft-)Nummer: 47
DOI: 10.1039/C5TA06309D
Kurzbeschreibung (Abstract):

The development of efficient and stable electrocatalysts on the basis of non-precious metals (Co, Fe) is considered as one of the most promising routes to replace expensive and susceptible platinum as the oxygen reduction reaction (ORR) catalyst. Here we report a synthetic strategy for the precursor controlled, template-free preparation of novel mono- (Fe; Co) and bimetallic (Fe/Co) nitrogen-doped porous carbons and their electrocatalytic performance towards the ORR. The precursors are composed of metal–porphyrin based conjugated microporous polymers (M-CMPs with M = Fe; Co; Fe/Co) derived from polymerization of metalloporphyrins by the Suzuki polycondensation reaction, which enables the synthesis of bimetallic polymers with alternating metal–porphyrin units for the preparation of carbon-based catalysts with homogenously distributed CoN4 and FeN4 centres. Subsequent pyrolysis of the networks reveals the key role of pre-morphology and network composition on the active sites. 57Fe-Mössbauer spectroscopy was conducted on iron catalysts (Fe; Fe/Co) to determine the coordination of Fe within the N-doped carbon matrix and the catalytic activity-enhancing shift in electron density. In acidic media the bimetallic catalyst demonstrates a synergetic effect for cobalt and iron active sites, mainly through a 4-electron transfer process, achieving an onset potential of 0.88 V (versus a reversible hydrogen electrode) and a half-wave potential of 0.78 V, which is only 0.06 V less than that of the state-of-the-art Pt/C catalyst.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 01 Mär 2016 09:34
Letzte Änderung: 18 Aug 2021 08:26
PPN:
Sponsoren: This work was financially supported by the Max Planck Society through the program MaxNet Energy, ERC grant on NANOGRAPH, the project INSOLCELL and EC Graphene Flagship (CNECT-ICT-604391)., Financial support by the DFG funding of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070) is gratefully acknowledged by UIK.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen