TU Darmstadt / ULB / TUbiblio

Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

Sahraie, Nastaran Ranjbar ; Kramm, Ulrike I. ; Steinberg, Julian ; Zhang, Yuanjian ; Thomas, Arne ; Reier, Tobias ; Paraknowitsch, Jens-Peter ; Strasser, Peter (2015)
Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts.
In: Nature Communications, 6
doi: 10.1038/ncomms9618
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono-and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and Fe-57 Mossbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Sahraie, Nastaran Ranjbar ; Kramm, Ulrike I. ; Steinberg, Julian ; Zhang, Yuanjian ; Thomas, Arne ; Reier, Tobias ; Paraknowitsch, Jens-Peter ; Strasser, Peter
Art des Eintrags: Bibliographie
Titel: Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts
Sprache: Englisch
Publikationsjahr: Oktober 2015
Verlag: Nature Publishing Group
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 6
DOI: 10.1038/ncomms9618
Kurzbeschreibung (Abstract):

Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono-and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and Fe-57 Mossbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 01 Mär 2016 09:06
Letzte Änderung: 18 Aug 2021 08:28
PPN:
Sponsoren: Part of this work was financially supported by the German Federal Ministry of Education and Research (Bundesministerium fur Bildung und Forschung, BMBF) under grant 03SF0531B,, Part of this work was financially supported by the Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen