TU Darmstadt / ULB / TUbiblio

Redox response of actinide materials to highly ionizing radiation

Tracy, Cameron L. ; Lang, Maik ; Pray, John M. ; Zhang, Fuxiang ; Popov, Dmitry ; Park, Changyong ; Trautmann, Christina ; Bender, Markus ; Severin, Daniel ; Skuratov, Vladimir A. ; Ewing, Rodney C. (2015)
Redox response of actinide materials to highly ionizing radiation.
In: Nature Communications, 6
doi: 10.1038/ncomms7133
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Energetic radiation can cause dramatic changes in the physical and chemical properties of actinide materials, degrading their performance in fission-based energy systems. As advanced nuclear fuels and wasteforms are developed, fundamental understanding of the processes controlling radiation damage accumulation is necessary. Here we report oxidation state reduction of actinide and analogue elements caused by high-energy, heavy ion irradiation and demonstrate coupling of this redox behaviour with structural modifications. ThO2, in which thorium is stable only in a tetravalent state, exhibits damage accumulation processes distinct from those of multivalent cation compounds CeO2 (Ce3+ and Ce4+) and UO3 (U4+, U5+ and U6+). The radiation tolerance of these materials depends on the efficiency of this redox reaction, such that damage can be inhibited by altering grain size and cation valence variability. Thus, the redox behaviour of actinide materials is important for the design of nuclear fuels and the prediction of their performance.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Tracy, Cameron L. ; Lang, Maik ; Pray, John M. ; Zhang, Fuxiang ; Popov, Dmitry ; Park, Changyong ; Trautmann, Christina ; Bender, Markus ; Severin, Daniel ; Skuratov, Vladimir A. ; Ewing, Rodney C.
Art des Eintrags: Bibliographie
Titel: Redox response of actinide materials to highly ionizing radiation
Sprache: Englisch
Publikationsjahr: Januar 2015
Verlag: Nature Publishing Group, London, England
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 6
DOI: 10.1038/ncomms7133
Kurzbeschreibung (Abstract):

Energetic radiation can cause dramatic changes in the physical and chemical properties of actinide materials, degrading their performance in fission-based energy systems. As advanced nuclear fuels and wasteforms are developed, fundamental understanding of the processes controlling radiation damage accumulation is necessary. Here we report oxidation state reduction of actinide and analogue elements caused by high-energy, heavy ion irradiation and demonstrate coupling of this redox behaviour with structural modifications. ThO2, in which thorium is stable only in a tetravalent state, exhibits damage accumulation processes distinct from those of multivalent cation compounds CeO2 (Ce3+ and Ce4+) and UO3 (U4+, U5+ and U6+). The radiation tolerance of these materials depends on the efficiency of this redox reaction, such that damage can be inhibited by altering grain size and cation valence variability. Thus, the redox behaviour of actinide materials is important for the design of nuclear fuels and the prediction of their performance.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 29 Feb 2016 13:56
Letzte Änderung: 29 Feb 2016 13:56
PPN:
Sponsoren: This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001089., HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF., This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357., HPCAT beamtime was granted by the Cargnegie/DOE Alliance Center (CDAC).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen