TU Darmstadt / ULB / TUbiblio

Interferring causal molecular networks: empirical assessment through a community-based effort

Hill, S. M. ; Heiser, L. M. ; Cokalaer, T. ; Unger, M. ; Nesser, N. K. ; Carlin, D. E. ; Zhang, Y. ; Sokolov, A. ; Paull, E. O. ; Wong, C. K. ; Graim, K. ; Bivol, A. ; Wang, H. ; Zhu, F. ; Afsari, B. ; Danilova, L. V. ; Favorov, A. V. ; Lee, W. S. ; Taylor, D. ; Hu, C. W. ; Long, B. L. ; Noren, D. P. ; Bisberg, A. J. ; Mills, G. B. ; Gray, J. W. ; Kellen, M. ; Norman, T. ; Friend, S. ; Qutub, A. A. ; Fertig, E. J. ; Guan, Y. ; Song, M. ; Stuart, J. M. ; Spellman, P. T. ; Koeppl, H. ; Stolovitzky, G. ; Saez-Rodriguez, J. ; Mukherjee, S. (2016)
Interferring causal molecular networks: empirical assessment through a community-based effort.
In: Nature methods, 13 (4)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREDREDREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Hill, S. M. ; Heiser, L. M. ; Cokalaer, T. ; Unger, M. ; Nesser, N. K. ; Carlin, D. E. ; Zhang, Y. ; Sokolov, A. ; Paull, E. O. ; Wong, C. K. ; Graim, K. ; Bivol, A. ; Wang, H. ; Zhu, F. ; Afsari, B. ; Danilova, L. V. ; Favorov, A. V. ; Lee, W. S. ; Taylor, D. ; Hu, C. W. ; Long, B. L. ; Noren, D. P. ; Bisberg, A. J. ; Mills, G. B. ; Gray, J. W. ; Kellen, M. ; Norman, T. ; Friend, S. ; Qutub, A. A. ; Fertig, E. J. ; Guan, Y. ; Song, M. ; Stuart, J. M. ; Spellman, P. T. ; Koeppl, H. ; Stolovitzky, G. ; Saez-Rodriguez, J. ; Mukherjee, S.
Art des Eintrags: Bibliographie
Titel: Interferring causal molecular networks: empirical assessment through a community-based effort
Sprache: Englisch
Publikationsjahr: 22 Februar 2016
Verlag: Nature Publishing Group
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature methods
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 4
URL / URN: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth...
Kurzbeschreibung (Abstract):

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREDREDREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

Freie Schlagworte: Cancer models, systems biology, Cellular signalling networks
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 24 Feb 2016 11:45
Letzte Änderung: 23 Sep 2021 14:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen