TU Darmstadt / ULB / TUbiblio

Residual Log-Periodogram Inference for Long-Run-Relationships

Hassler, Uwe ; Marmol, Francesc ; Velasco, Carlos (2009)
Residual Log-Periodogram Inference for Long-Run-Relationships.
Report, Erstveröffentlichung

Kurzbeschreibung (Abstract)

We assume that some consistent estimator of an equilibrium relation between non-stationary fractionally integrated series is used in a first step to compute residuals (or differences thereof). We propose to apply the semiparametric log-periodogram regression to the (differenced) residuals in order to estimate and test the degree of persistence of the equilibrium deviation. Provided the first step estimator converges fast enough, we describe simple semiparametric conditions around zero frequency that guarantee consistent estimation of persistence from residuals. At the same time limiting normality is derived, which allows to construct approximate confidence intervals to test hypotheses on the persistence. Our assumptions allow for stationary deviations with long memory as well as for non-stationary but transitory equilibrium errors. In particular, in case of several regressors we consider the joint estimation of the memory parameters of the observed series and of the equilibrium deviation. Wald statistics to test for parameter restrictions of the system have a limiting chi-squared distribution. We also analyze the benefits of a pooled version of the estimate. The empirical applicability of our general cointegration test is investigated by means of Monte Carlo experiments and illustrated with a study of exchange rate dynamics.

Typ des Eintrags: Report
Erschienen: 2009
Autor(en): Hassler, Uwe ; Marmol, Francesc ; Velasco, Carlos
Art des Eintrags: Erstveröffentlichung
Titel: Residual Log-Periodogram Inference for Long-Run-Relationships
Sprache: Englisch
Publikationsjahr: 2009
Ort: Darmstadt
Reihe: Darmstadt Discussion Papers in Economics
Band einer Reihe: 115
URL / URN: http://tuprints.ulb.tu-darmstadt.de/4814
Kurzbeschreibung (Abstract):

We assume that some consistent estimator of an equilibrium relation between non-stationary fractionally integrated series is used in a first step to compute residuals (or differences thereof). We propose to apply the semiparametric log-periodogram regression to the (differenced) residuals in order to estimate and test the degree of persistence of the equilibrium deviation. Provided the first step estimator converges fast enough, we describe simple semiparametric conditions around zero frequency that guarantee consistent estimation of persistence from residuals. At the same time limiting normality is derived, which allows to construct approximate confidence intervals to test hypotheses on the persistence. Our assumptions allow for stationary deviations with long memory as well as for non-stationary but transitory equilibrium errors. In particular, in case of several regressors we consider the joint estimation of the memory parameters of the observed series and of the equilibrium deviation. Wald statistics to test for parameter restrictions of the system have a limiting chi-squared distribution. We also analyze the benefits of a pooled version of the estimate. The empirical applicability of our general cointegration test is investigated by means of Monte Carlo experiments and illustrated with a study of exchange rate dynamics.

Freie Schlagworte: Fractional cointegration; semiparametric inference; limiting normality; long memory; non-stationarity; exchange rates.
URN: urn:nbn:de:tuda-tuprints-48149
Zusätzliche Informationen:

JEL Classification: C14, C22; Erstellt Juni 2002

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 300 Sozialwissenschaften > 330 Wirtschaft
Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Volkswirtschaftliche Fachgebiete
Hinterlegungsdatum: 07 Feb 2016 20:55
Letzte Änderung: 25 Okt 2023 07:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen