TU Darmstadt / ULB / TUbiblio

An experimental and theoretical study toward the synthesis, structure and thermal decomposition of some phenyl tetrazoles

Yılmaz, Nurdane and Öz, Sevi and Atakol, Arda and Svoboda, Ingrid and Aydıner, Burcu and Akay, M. Abdülkadir and Atakol, Orhan (2015):
An experimental and theoretical study toward the synthesis, structure and thermal decomposition of some phenyl tetrazoles.
In: Journal of Thermal Analysis and Calorimetry, Springer Netherlands, pp. 2321-2328, 119, (3), ISSN 1388-6150,
[Online-Edition: http://dx.doi.org/10.1007/s10973-014-4243-z],
[Article]

Abstract

1-phenyl-1H-tetrazole (I), 1(2-chlorophenyl)-1H-tetrazole (II), 1(4-chlorophenyl)-1H-tetrazole (III), 1(4-hydroxyphenyl)-1H-tetrazole (IV), 1(4-methoxyphenyl)-1H-tetrazole (V), 1(4-nitrophenyl)-1H-tetrazole (VI), 1(2-pyridyl)-1H-tetrazole (VII), and bis-1,4-tetrazol-1-yl benzene (VIII) were prepared from aniline, 2-chloro aniline, 4-chloro aniline, 4-hydroxy aniline, 4-methoxy aniline, 4-nitro aniline, 2-aminopyridine, and 1,4-phenylendiamine and characterized by Infrared spectroscopy, elemental analysis, mass spectrometry, H-1 Nuclear Magnetic Resonance, and C-13 Nuclear Magnetic Resonance spectroscopy. Suitable crystals of compounds I, II, IV, V, and VI were obtained and their molecular structures were determined using single crystal X-ray Diffraction. All tetrazole compounds were also investigated using Thermogravimetry-Differential Thermal Analysis. At temperatures between 190-240 A degrees C, the tetrazole ring decomposed exothermically. The decomposition products were estimated by relating the mass loss data and IR spectroscopy results of the residue with N-2 release and isonitrile formation as outcome of thermal decomposition. The heat of the exothermic decomposition was measured by Differential Scanning Calorimetry. Optimizations and frequency analyses of all tetrazole compounds were performed at the B3LYP/cc-pVDZ level of theory which are DFT-based structures. The optimum geometries of tetrazole compounds were enlightened with the help of Gaussian 09 pocket program. The enthalpies of formation for solid state were calculated theoretically by CBS-4 M algorithm. The calculated results were compared with the experimental data obtained from DSC study. It was seen that the enthalpies of decomposition of compounds II, III, IV, and V were in good agreement with the theoretical values. However, decomposition of compounds I, VI, VII, and VIII showed significant variation from the theoretical calculations.

Item Type: Article
Erschienen: 2015
Creators: Yılmaz, Nurdane and Öz, Sevi and Atakol, Arda and Svoboda, Ingrid and Aydıner, Burcu and Akay, M. Abdülkadir and Atakol, Orhan
Title: An experimental and theoretical study toward the synthesis, structure and thermal decomposition of some phenyl tetrazoles
Language: English
Abstract:

1-phenyl-1H-tetrazole (I), 1(2-chlorophenyl)-1H-tetrazole (II), 1(4-chlorophenyl)-1H-tetrazole (III), 1(4-hydroxyphenyl)-1H-tetrazole (IV), 1(4-methoxyphenyl)-1H-tetrazole (V), 1(4-nitrophenyl)-1H-tetrazole (VI), 1(2-pyridyl)-1H-tetrazole (VII), and bis-1,4-tetrazol-1-yl benzene (VIII) were prepared from aniline, 2-chloro aniline, 4-chloro aniline, 4-hydroxy aniline, 4-methoxy aniline, 4-nitro aniline, 2-aminopyridine, and 1,4-phenylendiamine and characterized by Infrared spectroscopy, elemental analysis, mass spectrometry, H-1 Nuclear Magnetic Resonance, and C-13 Nuclear Magnetic Resonance spectroscopy. Suitable crystals of compounds I, II, IV, V, and VI were obtained and their molecular structures were determined using single crystal X-ray Diffraction. All tetrazole compounds were also investigated using Thermogravimetry-Differential Thermal Analysis. At temperatures between 190-240 A degrees C, the tetrazole ring decomposed exothermically. The decomposition products were estimated by relating the mass loss data and IR spectroscopy results of the residue with N-2 release and isonitrile formation as outcome of thermal decomposition. The heat of the exothermic decomposition was measured by Differential Scanning Calorimetry. Optimizations and frequency analyses of all tetrazole compounds were performed at the B3LYP/cc-pVDZ level of theory which are DFT-based structures. The optimum geometries of tetrazole compounds were enlightened with the help of Gaussian 09 pocket program. The enthalpies of formation for solid state were calculated theoretically by CBS-4 M algorithm. The calculated results were compared with the experimental data obtained from DSC study. It was seen that the enthalpies of decomposition of compounds II, III, IV, and V were in good agreement with the theoretical values. However, decomposition of compounds I, VI, VII, and VIII showed significant variation from the theoretical calculations.

Journal or Publication Title: Journal of Thermal Analysis and Calorimetry
Volume: 119
Number: 3
Publisher: Springer Netherlands
Uncontrolled Keywords: Substituted-1H-tetrazoles, TG, DSC, Energetic materials, Thermal decomposition, CBS-4M
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Structure Research
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences
Date Deposited: 21 Jan 2016 10:33
Official URL: http://dx.doi.org/10.1007/s10973-014-4243-z
Identification Number: doi:10.1007/s10973-014-4243-z
Funders: Financial support of this work by the University of Ankara Scientific Research Fund under contract no. 12B4240003 and Ahi Evran University Scientific Research Fund under contract no. 4001.12.014 are gratefully acknowledged.
Export:
Suche nach Titel in: TUfind oder in Google

Optionen (nur für Redakteure)

View Item View Item