TU Darmstadt / ULB / TUbiblio

Core-Shell Lead-Free Piezoelectric Ceramics: Current Status and Advanced Characterization of the Bi1/2Na1/2TiO3-SrTiO3System

Acosta, Matias ; Schmitt, Ljubomira A. ; Molina-Luna, Leopoldo ; Scherrer, Michael C. ; Brilz, Michael ; Webber, Kyle G. ; Deluca, Marco ; Kleebe, Hans-Joachim ; Rödel, Jürgen ; Donner, Wolfgang ; Johnson, D. (2015)
Core-Shell Lead-Free Piezoelectric Ceramics: Current Status and Advanced Characterization of the Bi1/2Na1/2TiO3-SrTiO3System.
In: Journal of the American Ceramic Society, 98 (11)
doi: 10.1111/jace.13853
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The design of core-shell materials affords additional degrees of freedom to tailor functional properties as compared to solid solution counterparts. Although to date most of the work in core-shell materials has focused on dielectrics, piezoelectric core-shell ceramics may gain similar interest. Generalities of core-shell functional ceramics features are addressed in this work. A model system, Bi1/2Na1/2TiO3-SrTiO3, is introduced to discuss structure-property relationships. We demonstrate that this system features a core-shell microstructure for the composition corresponding to 25at.% Sr. The material is studied by means of macroscopic functional properties and insitu structural characterization techniques at different length scales, such as X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The evolution of the core-shell with field and temperature determines its functional properties. The high strain of the system, 0.3% at 4kV/mm, is due to an electric-field-induced phase transition of the core and shell. Upon field removal the core remains in a poled state, whereas the shell is characterized by a reversible transformation. The reversibility of the phase transition of shells and associated switching are key features in the observed giant strain. Dielectric anomalies are found to be related to changes in oxygen octahedral tilting angles within the core and shell.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Acosta, Matias ; Schmitt, Ljubomira A. ; Molina-Luna, Leopoldo ; Scherrer, Michael C. ; Brilz, Michael ; Webber, Kyle G. ; Deluca, Marco ; Kleebe, Hans-Joachim ; Rödel, Jürgen ; Donner, Wolfgang ; Johnson, D.
Art des Eintrags: Bibliographie
Titel: Core-Shell Lead-Free Piezoelectric Ceramics: Current Status and Advanced Characterization of the Bi1/2Na1/2TiO3-SrTiO3System
Sprache: Englisch
Publikationsjahr: November 2015
Verlag: John Wiley & Sons, Inc.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 98
(Heft-)Nummer: 11
DOI: 10.1111/jace.13853
Kurzbeschreibung (Abstract):

The design of core-shell materials affords additional degrees of freedom to tailor functional properties as compared to solid solution counterparts. Although to date most of the work in core-shell materials has focused on dielectrics, piezoelectric core-shell ceramics may gain similar interest. Generalities of core-shell functional ceramics features are addressed in this work. A model system, Bi1/2Na1/2TiO3-SrTiO3, is introduced to discuss structure-property relationships. We demonstrate that this system features a core-shell microstructure for the composition corresponding to 25at.% Sr. The material is studied by means of macroscopic functional properties and insitu structural characterization techniques at different length scales, such as X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The evolution of the core-shell with field and temperature determines its functional properties. The high strain of the system, 0.3% at 4kV/mm, is due to an electric-field-induced phase transition of the core and shell. Upon field removal the core remains in a poled state, whereas the shell is characterized by a reversible transformation. The reversibility of the phase transition of shells and associated switching are key features in the observed giant strain. Dielectric anomalies are found to be related to changes in oxygen octahedral tilting angles within the core and shell.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektromechanik von Oxiden
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 19 Jan 2016 11:55
Letzte Änderung: 19 Jan 2016 11:55
PPN:
Sponsoren: This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) under SFB595 and the State Center AdRIA on Adaptronics., K.G.W. acknowledges the DFG under WE4972/2-1 for financial support., The TEM microscopes were partially financed by the DFG.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen