TU Darmstadt / ULB / TUbiblio

Local electronic and magnetic properties of pure and Mn-containing magnetocaloric LaFe13−xSixcompounds inferred from Mössbauer spectroscopy and magnetometry

Makarov, Sergey I. ; Krautz, Maria ; Salamon, Soma ; Skokov, Konstantin ; Teixeira, Cristiano S. ; Gutfleisch, Oliver ; Wende, Heiko ; Keune, Werner (2015)
Local electronic and magnetic properties of pure and Mn-containing magnetocaloric LaFe13−xSixcompounds inferred from Mössbauer spectroscopy and magnetometry.
In: Journal of Physics D: Applied Physics, 48 (30)
doi: 10.1088/0022-3727/48/30/305006
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Manganese containing La–Fe–Si alloys are important magnetocaloric compounds, since Mn atoms prevent segregation of hydrogen in partially hydrogenated La–Fe–Mn–Si alloys when their Curie temperature is tuned to room temperature by hydrogen. The effect of Mn alloying on the Fe atomic magnetic moment μ Fe is still rather unexplored. Therefore, we investigated the (local) magnetic and electric hyperfine interactions in the strongly magnetocaloric compound LaFe11.3Mn0.3Si1.4 and, for comparison, LaFe11.6Si1.4 by 57Fe Mössbauer spectroscopy, and the global magnetic properties by vibrating sample magnetometry. The NaZn13 structure was confirmed by x-ray diffraction. Two non-equivalent Fe lattice sites are known to exist in this material: the (96i) sites (FeII) of low local symmetry, and the highly symmetrical (8b) sites (FeI). At room temperature in the paramagnetic state, the electric hyperfine parameters of Fe atoms on both sites were obtained. At low temperatures (4.8 K), the observed magnetically split nuclear Zeeman sextets with broad apparent lines were analyzed in terms of a distribution P(B hf) of hyperfine magnetic fields B hf. The average hyperfine field 〈B hf〉, originating predominantly from FeII sites, was found to be rather high (30.7(1) T at 4.8 K) for LaFe11.6Si1.4, and the approximate relation 〈B hf〉 = Aμ Fe is confirmed for FeII sites, with A = 14.2 T/μ B. 〈B hf〉 is significantly reduced (to 27.7(1) T at 4.8 K) for the Mn-containing sample LaFe11.3Mn0.3Si1.4, providing evidence for a reduction by 9.7% of the average Fe atomic moment μFe from ~2.16 μ B to a value of ~1.95 μ B by Mn substitution of Fe. Our Mössbauer results are in good agreement with magnetometry, which reveals a reduction of the saturation magnetization of M s = 163.1(1) Am2 kg−1 of LaFe11.6Si1.4 by 10.5% due to Mn substitution.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Makarov, Sergey I. ; Krautz, Maria ; Salamon, Soma ; Skokov, Konstantin ; Teixeira, Cristiano S. ; Gutfleisch, Oliver ; Wende, Heiko ; Keune, Werner
Art des Eintrags: Bibliographie
Titel: Local electronic and magnetic properties of pure and Mn-containing magnetocaloric LaFe13−xSixcompounds inferred from Mössbauer spectroscopy and magnetometry
Sprache: Englisch
Publikationsjahr: 5 August 2015
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics D: Applied Physics
Jahrgang/Volume einer Zeitschrift: 48
(Heft-)Nummer: 30
DOI: 10.1088/0022-3727/48/30/305006
Kurzbeschreibung (Abstract):

Manganese containing La–Fe–Si alloys are important magnetocaloric compounds, since Mn atoms prevent segregation of hydrogen in partially hydrogenated La–Fe–Mn–Si alloys when their Curie temperature is tuned to room temperature by hydrogen. The effect of Mn alloying on the Fe atomic magnetic moment μ Fe is still rather unexplored. Therefore, we investigated the (local) magnetic and electric hyperfine interactions in the strongly magnetocaloric compound LaFe11.3Mn0.3Si1.4 and, for comparison, LaFe11.6Si1.4 by 57Fe Mössbauer spectroscopy, and the global magnetic properties by vibrating sample magnetometry. The NaZn13 structure was confirmed by x-ray diffraction. Two non-equivalent Fe lattice sites are known to exist in this material: the (96i) sites (FeII) of low local symmetry, and the highly symmetrical (8b) sites (FeI). At room temperature in the paramagnetic state, the electric hyperfine parameters of Fe atoms on both sites were obtained. At low temperatures (4.8 K), the observed magnetically split nuclear Zeeman sextets with broad apparent lines were analyzed in terms of a distribution P(B hf) of hyperfine magnetic fields B hf. The average hyperfine field 〈B hf〉, originating predominantly from FeII sites, was found to be rather high (30.7(1) T at 4.8 K) for LaFe11.6Si1.4, and the approximate relation 〈B hf〉 = Aμ Fe is confirmed for FeII sites, with A = 14.2 T/μ B. 〈B hf〉 is significantly reduced (to 27.7(1) T at 4.8 K) for the Mn-containing sample LaFe11.3Mn0.3Si1.4, providing evidence for a reduction by 9.7% of the average Fe atomic moment μFe from ~2.16 μ B to a value of ~1.95 μ B by Mn substitution of Fe. Our Mössbauer results are in good agreement with magnetometry, which reveals a reduction of the saturation magnetization of M s = 163.1(1) Am2 kg−1 of LaFe11.6Si1.4 by 10.5% due to Mn substitution.

Freie Schlagworte: Mossbauer spectroscopy, intermetallic compounds, Fe and its alloys, magnetocaloric effect, magnetic cooling, saturation moments, magnetic susceptibility
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 08 Jan 2016 10:11
Letzte Änderung: 08 Jan 2016 10:11
PPN:
Sponsoren: Funded by Deutsche Forschungsgemeinschaft under grant SPP 1599 and by Stiftung Mercator (MERCUR) .
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen