TU Darmstadt / ULB / TUbiblio

Finite-Volume Groundwater Modeling With Non-Orthogonal Grids, Using A Coordinate Transformation Method

Rühaak, W. ; Clauser, C. ; Wolf, A. ; Rath, V. (2006)
Finite-Volume Groundwater Modeling With Non-Orthogonal Grids, Using A Coordinate Transformation Method.
In: Proceedings of the conference Modflow and More 2006: Managing Ground-Water Systems. International Ground Water Modeling Center (IGWMC), May 22-24, Colorado School of Mines, Golden Colorado., 31 (3)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Many popular groundwater modeling codes are based on the finite-differences or finite-volume method for orthogonal grids. In cases of complex subsurface geometries this type of grid leads either to coarse geometric representations or to extreme large meshes. We use a coordinate transformation method (CTM) to circumvent this shortcoming. In computational fluid dynamics (CFD), this method has been successfully applied to the general Navier-Stokes equation. The method is based on tensor analysis and performs a transformation of a curvilinear into a rectangular unit grid, on which a modified formulation of the differential equations is applied. Therefore it is not necessary to reformulate the code in total. We have applied the CTM to an existing three-dimensional code (SHEMAT), a simulator for heat conduction and advection in porous media. The finite-volume discretization scheme for the non-orthogonal hexahedral grid leads to a 19-point stencil and a corresponding banded system matrix. The implementation is straightforward and it is possible to use some existing routines without modification. The accuracy of the modified code was demonstrated on a two-dimensional analytical solution for coupled flow and heat transport.

Typ des Eintrags: Artikel
Erschienen: 2006
Autor(en): Rühaak, W. ; Clauser, C. ; Wolf, A. ; Rath, V.
Art des Eintrags: Bibliographie
Titel: Finite-Volume Groundwater Modeling With Non-Orthogonal Grids, Using A Coordinate Transformation Method
Sprache: Englisch
Publikationsjahr: 2006
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the conference Modflow and More 2006: Managing Ground-Water Systems. International Ground Water Modeling Center (IGWMC), May 22-24, Colorado School of Mines, Golden Colorado.
Jahrgang/Volume einer Zeitschrift: 31
(Heft-)Nummer: 3
Kurzbeschreibung (Abstract):

Many popular groundwater modeling codes are based on the finite-differences or finite-volume method for orthogonal grids. In cases of complex subsurface geometries this type of grid leads either to coarse geometric representations or to extreme large meshes. We use a coordinate transformation method (CTM) to circumvent this shortcoming. In computational fluid dynamics (CFD), this method has been successfully applied to the general Navier-Stokes equation. The method is based on tensor analysis and performs a transformation of a curvilinear into a rectangular unit grid, on which a modified formulation of the differential equations is applied. Therefore it is not necessary to reformulate the code in total. We have applied the CTM to an existing three-dimensional code (SHEMAT), a simulator for heat conduction and advection in porous media. The finite-volume discretization scheme for the non-orthogonal hexahedral grid leads to a 19-point stencil and a corresponding banded system matrix. The implementation is straightforward and it is possible to use some existing routines without modification. The accuracy of the modified code was demonstrated on a two-dimensional analytical solution for coupled flow and heat transport.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Angewandte Geothermie
Hinterlegungsdatum: 16 Nov 2015 08:59
Letzte Änderung: 16 Okt 2020 09:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen