TU Darmstadt / ULB / TUbiblio

Combining numerical modeling with geostatistical analysis for an improved reservoir exploration

Rühaak, W. ; Bär, K. ; Sass, I. (2014)
Combining numerical modeling with geostatistical analysis for an improved reservoir exploration.
In: Energy Procedia, 59
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Subsurface temperature is one of the key parameters in geothermal exploration. The estimation of the reservoir temperature is of high importance and usually done either by interpolation of temperature data or numerical modeling. However, temperature measurements of depths larger than a few hundred meters are generally very sparse. A pure interpolation of such sparse data always involves big uncertainties and usually neglects knowledge of the reservoir geometry or reservoir properties.

Kriging with trend does allow including secondary data to improve the interpolation of the primary one. Using this approach temperature measurements of depths larger than 1,000 m of the federal state of Hessen/Germany have been interpolated in 3D. A conductive numerical 3D temperature model was used as secondary information. This way the interpolation result reflects also the geological structure. As a result the quality of the estimation improves considerably.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Rühaak, W. ; Bär, K. ; Sass, I.
Art des Eintrags: Bibliographie
Titel: Combining numerical modeling with geostatistical analysis for an improved reservoir exploration
Sprache: Englisch
Publikationsjahr: 2014
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energy Procedia
Jahrgang/Volume einer Zeitschrift: 59
URL / URN: http://www.sciencedirect.com/science/article/pii/S1876610214...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Subsurface temperature is one of the key parameters in geothermal exploration. The estimation of the reservoir temperature is of high importance and usually done either by interpolation of temperature data or numerical modeling. However, temperature measurements of depths larger than a few hundred meters are generally very sparse. A pure interpolation of such sparse data always involves big uncertainties and usually neglects knowledge of the reservoir geometry or reservoir properties.

Kriging with trend does allow including secondary data to improve the interpolation of the primary one. Using this approach temperature measurements of depths larger than 1,000 m of the federal state of Hessen/Germany have been interpolated in 3D. A conductive numerical 3D temperature model was used as secondary information. This way the interpolation result reflects also the geological structure. As a result the quality of the estimation improves considerably.

Schlagworte:
Einzelne SchlagworteSprache
Subsurface temperaturesEnglisch
Kriging with External DriftEnglisch
Finite Element ModelingEnglisch
Zusätzliche Informationen:

European Geosciences Union General Assembly 2014, EGU Division Energy, Resources & the Environment (ERE)

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Angewandte Geothermie
Hinterlegungsdatum: 11 Nov 2015 18:14
Letzte Änderung: 03 Jun 2018 21:26
PPN:
Schlagworte:
Einzelne SchlagworteSprache
Subsurface temperaturesEnglisch
Kriging with External DriftEnglisch
Finite Element ModelingEnglisch
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen