Mikat, Heiko (2015)
Hybride Fehlerprognose zur Unterstützung prädiktiver Instandhaltungskonzepte in der Luftfahrt.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Die vorliegende Arbeit beschäftigt sich mit der Analyse der Möglichkeiten und Herausforderungen zur Steigerung der operationellen Leistungsfähigkeit von Luftfahrtsystemen durch zustandsbasierte Wartungskonzepte. Hierfür wird zunächst der Einfluss von Diagnose- und Prognosefunktionen auf die Verfügbarkeit und den Wartungsaufwand des operativen Systems dargestellt. Das Hauptziel der Arbeit ist nachfolgend die Analyse und Verifikation eines neuen Konzeptes zur Fehlerprognose.
Die erste Zielsetzung ist hierbei die Nachweisführung, dass prädiktive Instandhaltungskonzepte die operationelle Leistungsfähigkeit von Luftfahrtsystemen steigern können. Hierfür wurde eine speziell für diesen Zweck ausgelegte Simulationsumgebung aufgesetzt und validiert. Ein hierarchischer Modellierungsansatz ermöglicht eine ganzheitliche Bewertung von Auslegungskriterien hinsichtlich Genauigkeit und Präzision von Diagnose- und Prognosefunktionen. Durch die Modellierung der ersten beiden statistischen Momente ausgewählter Modellanteile wird weiterführend eine Risikoanalyse für leistungsorientierte Vertragskonzepte ermöglicht.
Motiviert durch die Ergebnisse dieser Analyse wird als Hauptziel der Arbeit ein hybrides Prognosekonzept mit daten- und modellbasierten Anteilen untersucht. Hierzu wird die „Genetische Programmierung“ (GP) als datenbasiertes Verfahren zur Systemidentifikation durch das „Unscented Kalman Filter“ (UKF) um einen modellbasierten Anteil erweitert (GP-UKF). Es wird gezeigt, dass der GP-UKF durch die Bereitstellung von geeigneten Trainingsdaten, ohne Vorwissen über den zu prognostizierenden Prozess eine robuste und zuverlässige Fehlerprognose ermöglicht. Die Motivation hierfür resultiert aus den komplexen und kostenintensiven Maßnahmen zur Neuentwicklung von Prognosefähigkeiten, die durch den hiermit verbundenen hohen Aufwand in der Entwicklungsphase und die begrenzte Qualität der Prognose in der Nutzungsphase bisher in fliegenden Systemen nur für einen sehr begrenzten Anwendungsbereich eine erfolgreiche Nutzung zugelassen haben.
Für die Verifikation des GP-UKF werden Modelle zur Simulation von Degradierungsverläufen unter Berücksichtigung von messbaren und nicht messbaren Einflussgrößen aufgestellt und zusätzlich ein speziell instrumentierter Prüfstand genutzt. Die Simulationsmodelle ermöglichen die Analyse eines breiten Spektrums an Anwendungsfällen zur Bewertung der Prognosefähigkeiten des GP-UKF. Für den experimentellen Anteil der Verifikation wird das Degradierungsverhalten von Wälzlagern eines luftfahrttauglichen Lüfters analysiert und prognostiziert. Der Vergleich mit einem etablierten Verfahren aus dem Bereich der hybriden Fehlerprognose ermöglicht schließlich eine objektive Bewertung des untersuchten Prognoseansatzes. Abschließend werden die Ergebnisse der quantitativen Bewertung verwendet, um mittels der validierten Simulationsumgebung für Potentialanalysen von Prognosefunktionen eine Analyse des operationellen Nutzens des GP-UKF-Ansatzes vorzunehmen.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2015 | ||||
Autor(en): | Mikat, Heiko | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Hybride Fehlerprognose zur Unterstützung prädiktiver Instandhaltungskonzepte in der Luftfahrt | ||||
Sprache: | Deutsch | ||||
Referenten: | Klingauf, Prof. Uwe ; Abele, Prof. Eberhard | ||||
Publikationsjahr: | 2015 | ||||
Ort: | Darmstadt | ||||
Kollation: | 210 Seiten | ||||
Datum der mündlichen Prüfung: | 24 Februar 2015 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4962 | ||||
Kurzbeschreibung (Abstract): | Die vorliegende Arbeit beschäftigt sich mit der Analyse der Möglichkeiten und Herausforderungen zur Steigerung der operationellen Leistungsfähigkeit von Luftfahrtsystemen durch zustandsbasierte Wartungskonzepte. Hierfür wird zunächst der Einfluss von Diagnose- und Prognosefunktionen auf die Verfügbarkeit und den Wartungsaufwand des operativen Systems dargestellt. Das Hauptziel der Arbeit ist nachfolgend die Analyse und Verifikation eines neuen Konzeptes zur Fehlerprognose. Die erste Zielsetzung ist hierbei die Nachweisführung, dass prädiktive Instandhaltungskonzepte die operationelle Leistungsfähigkeit von Luftfahrtsystemen steigern können. Hierfür wurde eine speziell für diesen Zweck ausgelegte Simulationsumgebung aufgesetzt und validiert. Ein hierarchischer Modellierungsansatz ermöglicht eine ganzheitliche Bewertung von Auslegungskriterien hinsichtlich Genauigkeit und Präzision von Diagnose- und Prognosefunktionen. Durch die Modellierung der ersten beiden statistischen Momente ausgewählter Modellanteile wird weiterführend eine Risikoanalyse für leistungsorientierte Vertragskonzepte ermöglicht. Motiviert durch die Ergebnisse dieser Analyse wird als Hauptziel der Arbeit ein hybrides Prognosekonzept mit daten- und modellbasierten Anteilen untersucht. Hierzu wird die „Genetische Programmierung“ (GP) als datenbasiertes Verfahren zur Systemidentifikation durch das „Unscented Kalman Filter“ (UKF) um einen modellbasierten Anteil erweitert (GP-UKF). Es wird gezeigt, dass der GP-UKF durch die Bereitstellung von geeigneten Trainingsdaten, ohne Vorwissen über den zu prognostizierenden Prozess eine robuste und zuverlässige Fehlerprognose ermöglicht. Die Motivation hierfür resultiert aus den komplexen und kostenintensiven Maßnahmen zur Neuentwicklung von Prognosefähigkeiten, die durch den hiermit verbundenen hohen Aufwand in der Entwicklungsphase und die begrenzte Qualität der Prognose in der Nutzungsphase bisher in fliegenden Systemen nur für einen sehr begrenzten Anwendungsbereich eine erfolgreiche Nutzung zugelassen haben. Für die Verifikation des GP-UKF werden Modelle zur Simulation von Degradierungsverläufen unter Berücksichtigung von messbaren und nicht messbaren Einflussgrößen aufgestellt und zusätzlich ein speziell instrumentierter Prüfstand genutzt. Die Simulationsmodelle ermöglichen die Analyse eines breiten Spektrums an Anwendungsfällen zur Bewertung der Prognosefähigkeiten des GP-UKF. Für den experimentellen Anteil der Verifikation wird das Degradierungsverhalten von Wälzlagern eines luftfahrttauglichen Lüfters analysiert und prognostiziert. Der Vergleich mit einem etablierten Verfahren aus dem Bereich der hybriden Fehlerprognose ermöglicht schließlich eine objektive Bewertung des untersuchten Prognoseansatzes. Abschließend werden die Ergebnisse der quantitativen Bewertung verwendet, um mittels der validierten Simulationsumgebung für Potentialanalysen von Prognosefunktionen eine Analyse des operationellen Nutzens des GP-UKF-Ansatzes vorzunehmen. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | Luftfahrt, Instandhaltung, Fehlerdiagnose, Fehlerprognose, Systemidentifikation, Genetische Programmierung, Zustandsschätzung, Kalman Filter | ||||
URN: | urn:nbn:de:tuda-tuprints-49626 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
||||
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Flugsysteme und Regelungstechnik (FSR) |
||||
Hinterlegungsdatum: | 01 Nov 2015 20:55 | ||||
Letzte Änderung: | 01 Nov 2015 20:55 | ||||
PPN: | |||||
Referenten: | Klingauf, Prof. Uwe ; Abele, Prof. Eberhard | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 24 Februar 2015 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |