TU Darmstadt / ULB / TUbiblio

Atomistic modelling of zirconium and silicon segregation at twist and tilt grain boundaries in molybdenum

Lenchuk, Olena ; Rohrer, Jochen ; Albe, Karsten (2015)
Atomistic modelling of zirconium and silicon segregation at twist and tilt grain boundaries in molybdenum.
In: Journal of Materials Science, 51
doi: 10.1007/s10853-015-9494-y
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We investigate the influence of Zr and Si seg- regation on the cohesive strength of grain boundaries (GBs) in molybdenum using density functional theory calcula- tions. A tilt Sigma 5(310)[001] and twist Sigma 5[001] GB in bicrystal geometry are chosen as structural models. We determine the site preference of Zr and Si for segregation in these GBs and define the segregation energy. We quantify the effect of solutes on the stability of the GBs against brittle fracture by means of the Griffith criterion (work of separation). Additionally, the intrinsic bond strength of the GB containing a solute is quantified by means of the the- oretical strength. The results show that Zr and Si tend to segregate at the GBs if the low-energy insertion sites are available. However, the work of separation is decreased by the presence of Zr and Si and even in the presence of oxygen, there is no increase of the Griffith energy. Con- tributions of strain and chemical energy are analysed in order to explain our findings

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Lenchuk, Olena ; Rohrer, Jochen ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Atomistic modelling of zirconium and silicon segregation at twist and tilt grain boundaries in molybdenum
Sprache: Englisch
Publikationsjahr: 19 Oktober 2015
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Materials Science
Jahrgang/Volume einer Zeitschrift: 51
DOI: 10.1007/s10853-015-9494-y
Kurzbeschreibung (Abstract):

We investigate the influence of Zr and Si seg- regation on the cohesive strength of grain boundaries (GBs) in molybdenum using density functional theory calcula- tions. A tilt Sigma 5(310)[001] and twist Sigma 5[001] GB in bicrystal geometry are chosen as structural models. We determine the site preference of Zr and Si for segregation in these GBs and define the segregation energy. We quantify the effect of solutes on the stability of the GBs against brittle fracture by means of the Griffith criterion (work of separation). Additionally, the intrinsic bond strength of the GB containing a solute is quantified by means of the the- oretical strength. The results show that Zr and Si tend to segregate at the GBs if the low-energy insertion sites are available. However, the work of separation is decreased by the presence of Zr and Si and even in the presence of oxygen, there is no increase of the Griffith energy. Con- tributions of strain and chemical energy are analysed in order to explain our findings

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen
Hinterlegungsdatum: 23 Okt 2015 11:35
Letzte Änderung: 16 Sep 2016 05:35
PPN:
Sponsoren: The research was supported by the German Research Foundation (DFG) through Project AL 578/9-1 within the Research Unit FOR 727 ‘‘Beyond Nickel-Base Superalloys’’. The authors gratefully acknowledge the computing time granted by, the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JUROPA at Jülich Supercomputing Center (JSC). Computational time was also made available by the HRZ (Lichtenberg-Cluster) at, TU Darmstadt. The authors would like to thank Prof. M. Heilmaier for scientific discussions.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen