TU Darmstadt / ULB / TUbiblio

Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction

Fürnkranz, Johannes ; Park, Sang-Hyeun
Hrsg.: Ganascia, Jean-Gabriel ; Lenca, Philippe ; Petit, Jean-Marc (2012)
Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction.
Proceedings of the 15th International Conference on Discovery Science (DS-12). Lyon, France
doi: 10.1007/978-3-642-33492-4_21
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we reinterpret error-correcting output codes (ECOCs) as a framework for converting multi-class classification problems into multi-label prediction problems. Different well-known multi-label learning approaches can be mapped upon particular ways of dealing with the original multi-class problem. For example, the label powerset approach obviously constitutes the inverse transformation from multi-label back to multi-class, whereas binary relevance learning may be viewed as the conventional way of dealing with ECOCs, in which each classifier is learned independently of the others. Consequently, we evaluate whether alternative choices for solving the multi-label problem may result in improved performance. This question is interesting because it is not clear whether approaches that do not treat the bits of the code words independently have sufficient error-correcting properties. Our results indicate that a slight but consistent advantage can be obtained with the use of multi-label methods, in particular when longer codes are employed.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Herausgeber: Ganascia, Jean-Gabriel ; Lenca, Philippe ; Petit, Jean-Marc
Autor(en): Fürnkranz, Johannes ; Park, Sang-Hyeun
Art des Eintrags: Bibliographie
Titel: Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction
Sprache: Englisch
Publikationsjahr: 2012
Ort: Lyon, France
Verlag: Springer
Veranstaltungstitel: Proceedings of the 15th International Conference on Discovery Science (DS-12)
Veranstaltungsort: Lyon, France
DOI: 10.1007/978-3-642-33492-4_21
Kurzbeschreibung (Abstract):

In this paper, we reinterpret error-correcting output codes (ECOCs) as a framework for converting multi-class classification problems into multi-label prediction problems. Different well-known multi-label learning approaches can be mapped upon particular ways of dealing with the original multi-class problem. For example, the label powerset approach obviously constitutes the inverse transformation from multi-label back to multi-class, whereas binary relevance learning may be viewed as the conventional way of dealing with ECOCs, in which each classifier is learned independently of the others. Consequently, we evaluate whether alternative choices for solving the multi-label problem may result in improved performance. This question is interesting because it is not clear whether approaches that do not treat the bits of the code words independently have sufficient error-correcting properties. Our results indicate that a slight but consistent advantage can be obtained with the use of multi-label methods, in particular when longer codes are employed.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 26 Nov 2015 08:05
Letzte Änderung: 26 Nov 2015 08:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen