TU Darmstadt / ULB / TUbiblio

Semi-Supervised Neural Networks for Nested Named Entity Recognition

Nam, Jinseok (2014)
Semi-Supervised Neural Networks for Nested Named Entity Recognition.
Workshop on GermEval 2014 Named Entity Recognition Shared Task, KONVENS.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we investigate a semi-supervised learning approach based on neural networks for nested named entity recognition on the GermEval 2014 dataset. The dataset consists of triples of a word, a named entity associated with that word in the first-level and one in the second-level. Additionally, the tag distribution is highly skewed, that is, the number of occurrences of certain types of tags is too small. Hence, we present a unified neural network architecture to deal with named entities in both levels simultaneously and to improve generalization performance on the classes that have a small number of labelled examples.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Nam, Jinseok
Art des Eintrags: Bibliographie
Titel: Semi-Supervised Neural Networks for Nested Named Entity Recognition
Sprache: Englisch
Publikationsjahr: 2014
Veranstaltungstitel: Workshop on GermEval 2014 Named Entity Recognition Shared Task, KONVENS
URL / URN: http://opus.bsz-bw.de/ubhi/volltexte/2014/308/pdf/03_09.pdf
Kurzbeschreibung (Abstract):

In this paper, we investigate a semi-supervised learning approach based on neural networks for nested named entity recognition on the GermEval 2014 dataset. The dataset consists of triples of a word, a named entity associated with that word in the first-level and one in the second-level. Additionally, the tag distribution is highly skewed, that is, the number of occurrences of certain types of tags is too small. Hence, we present a unified neural network architecture to deal with named entities in both levels simultaneously and to improve generalization performance on the classes that have a small number of labelled examples.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 25 Nov 2015 08:48
Letzte Änderung: 25 Nov 2015 08:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen