TU Darmstadt / ULB / TUbiblio

Femtosecond laser ablation-based mass spectrometry: An ideal tool for stoichiometric analysis of thin films

LaHaye, Nicole L. ; Kurian, Jose ; Diwakar, Prasoon K. ; Alff, Lambert ; Harilal, Sivanandan S. (2015)
Femtosecond laser ablation-based mass spectrometry: An ideal tool for stoichiometric analysis of thin films.
In: Scientific Reports, 5
doi: 10.1038/srep13121
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T′-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): LaHaye, Nicole L. ; Kurian, Jose ; Diwakar, Prasoon K. ; Alff, Lambert ; Harilal, Sivanandan S.
Art des Eintrags: Bibliographie
Titel: Femtosecond laser ablation-based mass spectrometry: An ideal tool for stoichiometric analysis of thin films
Sprache: Englisch
Publikationsjahr: 19 August 2015
Verlag: Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 5
DOI: 10.1038/srep13121
Kurzbeschreibung (Abstract):

An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T′-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 09 Okt 2015 08:42
Letzte Änderung: 09 Okt 2015 08:42
PPN:
Sponsoren: This work was supported in part by DOE/NNSA Office of Nonproliferation and Verification Research and Development (NA-22), the Laboratory Directed Research and Development (LDRD) Program of PNNL and the U.S. National Science Foundation., Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen