Römer, Ulrich (2015)
Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
This work addresses the magnetoquasistatic approximation of Maxwell’s equations with uncertainties in material data, shape and current sources, originating, e.g., from manufacturing imperfections. Well-established numerical schemes for the deterministic model are recalled. A parametric/stochastic model is established on the partial differential equation level and its differentiability is analyzed. Sensitivity analysis techniques are at the core of the uncertainty propagation methods discussed afterwards. Schemes for propagating both probabilistic and nonprobabilistic uncertain inputs as well as techniques for dimension reduction are addressed and compared. The findings are illustrated by simple numerical and real world examples with emphasis on accelerator magnet design using open source, in-house and commercial software.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2015 | ||||
Autor(en): | Römer, Ulrich | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design | ||||
Sprache: | Englisch | ||||
Referenten: | Weiland, Prof. Dr. Thomas ; Ulbrich, Prof. Dr. Stefan ; Sebastian, Prof. Dr. Schöps | ||||
Publikationsjahr: | 2015 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 13 Februar 2015 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4950 | ||||
Kurzbeschreibung (Abstract): | This work addresses the magnetoquasistatic approximation of Maxwell’s equations with uncertainties in material data, shape and current sources, originating, e.g., from manufacturing imperfections. Well-established numerical schemes for the deterministic model are recalled. A parametric/stochastic model is established on the partial differential equation level and its differentiability is analyzed. Sensitivity analysis techniques are at the core of the uncertainty propagation methods discussed afterwards. Schemes for propagating both probabilistic and nonprobabilistic uncertain inputs as well as techniques for dimension reduction are addressed and compared. The findings are illustrated by simple numerical and real world examples with emphasis on accelerator magnet design using open source, in-house and commercial software. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-49504 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) |
||||
Hinterlegungsdatum: | 04 Okt 2015 19:55 | ||||
Letzte Änderung: | 04 Okt 2015 19:55 | ||||
PPN: | |||||
Referenten: | Weiland, Prof. Dr. Thomas ; Ulbrich, Prof. Dr. Stefan ; Sebastian, Prof. Dr. Schöps | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 13 Februar 2015 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |