TU Darmstadt / ULB / TUbiblio

Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores

Ali, Mubarak ; Ahmed, Ishtiaq ; Nasir, Saima ; Ramirez, Patricio ; Niemeyer, Christof M. ; Mafe, Salvador ; Ensinger, Wolfgang (2015)
Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores.
In: ACS Applied Materials & Interfaces, 7 (35)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Ali, Mubarak ; Ahmed, Ishtiaq ; Nasir, Saima ; Ramirez, Patricio ; Niemeyer, Christof M. ; Mafe, Salvador ; Ensinger, Wolfgang
Art des Eintrags: Bibliographie
Titel: Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores
Sprache: Englisch
Publikationsjahr: September 2015
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Materials & Interfaces
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 35
URL / URN: http://dx.doi.org/10.1021/acsami.5b06015
Kurzbeschreibung (Abstract):

We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 25 Sep 2015 13:49
Letzte Änderung: 25 Sep 2015 13:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen