Lilienthal, Martin (2015)
Error Controlled hp-Adaptive Finite Element Methods for the Time-Dependent Maxwell Equations.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
This thesis deals with the development and analysis of a discretization method and the error controlled adaptation of spatial and temporal discretizations in context of the time-dependent Maxwell equations. To this end, a hp space-time Galerkin discretization for Maxwell’s equations, allowing for local adaptation of the polynomial approximation order p as well as the local meshsize h, is developed and analyzed. Furthermore, the developed discretization is extended to problems with waveguide structure, in order to efficiently model waveguide ports. For the purpose of local adaptation and control of the global discretization error, a posteriori error estimates for quantities of interest such as scattering parameters or farfield quantities are derived and employed within an hp-adaptive algorithm. While such adjoint based a posteriori error estimates are available for many other problems, its application to the present problem has been newly developed in this thesis.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2015 | ||||
Autor(en): | Lilienthal, Martin | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Error Controlled hp-Adaptive Finite Element Methods for the Time-Dependent Maxwell Equations | ||||
Sprache: | Englisch | ||||
Referenten: | Weiland, Prof. Dr. Thomas ; Egger, Prof. Dr. Herbert | ||||
Publikationsjahr: | 2015 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 6 März 2015 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4573 | ||||
Kurzbeschreibung (Abstract): | This thesis deals with the development and analysis of a discretization method and the error controlled adaptation of spatial and temporal discretizations in context of the time-dependent Maxwell equations. To this end, a hp space-time Galerkin discretization for Maxwell’s equations, allowing for local adaptation of the polynomial approximation order p as well as the local meshsize h, is developed and analyzed. Furthermore, the developed discretization is extended to problems with waveguide structure, in order to efficiently model waveguide ports. For the purpose of local adaptation and control of the global discretization error, a posteriori error estimates for quantities of interest such as scattering parameters or farfield quantities are derived and employed within an hp-adaptive algorithm. While such adjoint based a posteriori error estimates are available for many other problems, its application to the present problem has been newly developed in this thesis. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | Maxwell's equations, wave propagation, hp adaptivity, error control, space-time finite elements, discontinuous Galerkin | ||||
URN: | urn:nbn:de:tuda-tuprints-45739 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder) 18 Fachbereich Elektrotechnik und Informationstechnik Zentrale Einrichtungen Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) Exzellenzinitiative > Graduiertenschulen |
||||
Hinterlegungsdatum: | 05 Jul 2015 19:55 | ||||
Letzte Änderung: | 22 Sep 2016 08:05 | ||||
PPN: | |||||
Referenten: | Weiland, Prof. Dr. Thomas ; Egger, Prof. Dr. Herbert | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 6 März 2015 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |