TU Darmstadt / ULB / TUbiblio

Periodicity coding in the inferior colliculus of the cat. II. Topographical organization.

Schreiner, C. E. ; Langner, Gerald (1988)
Periodicity coding in the inferior colliculus of the cat. II. Topographical organization.
In: Journal of neurophysiology, 60 (6)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

1. The topographical distributions of single-unit and multiple-unit responses to amplitude-modulated tones--and to other relevant parameters of simple tonal stimuli--were defined across the main frequency representational gradient and within narrow frequency ranges represented in "frequency band laminae" in the principal midbrain auditory nucleus, the central nucleus of the inferior colliculus (ICC), in adult, barbiturate-anesthetized cats. 2. Responses to amplitude-modulated tones with the carrier set at the characteristic frequency (CF) of recorded neurons were obtained at many ICC locations in each experiment. The best modulation frequency (BMF) of neurons was defined at each site as that modulation frequency producing the highest neural discharge rate. Encountered BMFs ranged from approximately 10 to 1,000 Hz. A significant range of BMFs were recorded for neurons with any given characteristic frequency. BMF ranges varied as a systematic function of CF and of ICC recording depth. 3. Recorded BMFs were distributed topographically within functionally defined ICC frequency band laminae. Highest BMFs were found clustered in an ICC sector roughly between the middle and lateral third of its frequency band laminae. Progressively lower BMFs were recorded with increasing distance across the laminae in any direction away from the highest-BMF cluster. That is, "iso-BMF contours" were arrayed concentrically around the highest-BMF region. 4. Within frequency band laminae centered at approximately 3 and 12 kHz, quality factors (Q10 dBS) of frequency tuning curves were found to be between 0.8 and 8. Q10 dB values were distributed topographically within given frequency band laminae. Responses with narrow tuning curves (high Q10 dB values) were clustered in the middle third of the mediolateral extent of laminae; sharpness of tuning declined systematically away from this focus of highest Q10 dB values. The center of this distribution did not coincide with the center of the BMF distribution within the same lamina. 5. For neurons at greater than 90% of the ICC loci studied in these experiments, onset latencies to CF tones defined approximately 60 dB above response threshold fell within a range between 5 and 18 ms. Across a given frequency band lamina, onset latencies varied systematically, with longest response latencies recorded medially, and progressively shorter latencies recorded progressively more laterally. 6. Binaural interaction types were systematically distributed within frequency-band laminae. A cluster of excitatory-excitatory (EE) was seen, covering approximately one-third of the mapped area.(ABSTRACT TRUNCATED AT 400 WORDS)

Typ des Eintrags: Artikel
Erschienen: 1988
Autor(en): Schreiner, C. E. ; Langner, Gerald
Art des Eintrags: Bibliographie
Titel: Periodicity coding in the inferior colliculus of the cat. II. Topographical organization.
Sprache: Englisch
Publikationsjahr: 1988
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of neurophysiology
Jahrgang/Volume einer Zeitschrift: 60
(Heft-)Nummer: 6
Kurzbeschreibung (Abstract):

1. The topographical distributions of single-unit and multiple-unit responses to amplitude-modulated tones--and to other relevant parameters of simple tonal stimuli--were defined across the main frequency representational gradient and within narrow frequency ranges represented in "frequency band laminae" in the principal midbrain auditory nucleus, the central nucleus of the inferior colliculus (ICC), in adult, barbiturate-anesthetized cats. 2. Responses to amplitude-modulated tones with the carrier set at the characteristic frequency (CF) of recorded neurons were obtained at many ICC locations in each experiment. The best modulation frequency (BMF) of neurons was defined at each site as that modulation frequency producing the highest neural discharge rate. Encountered BMFs ranged from approximately 10 to 1,000 Hz. A significant range of BMFs were recorded for neurons with any given characteristic frequency. BMF ranges varied as a systematic function of CF and of ICC recording depth. 3. Recorded BMFs were distributed topographically within functionally defined ICC frequency band laminae. Highest BMFs were found clustered in an ICC sector roughly between the middle and lateral third of its frequency band laminae. Progressively lower BMFs were recorded with increasing distance across the laminae in any direction away from the highest-BMF cluster. That is, "iso-BMF contours" were arrayed concentrically around the highest-BMF region. 4. Within frequency band laminae centered at approximately 3 and 12 kHz, quality factors (Q10 dBS) of frequency tuning curves were found to be between 0.8 and 8. Q10 dB values were distributed topographically within given frequency band laminae. Responses with narrow tuning curves (high Q10 dB values) were clustered in the middle third of the mediolateral extent of laminae; sharpness of tuning declined systematically away from this focus of highest Q10 dB values. The center of this distribution did not coincide with the center of the BMF distribution within the same lamina. 5. For neurons at greater than 90% of the ICC loci studied in these experiments, onset latencies to CF tones defined approximately 60 dB above response threshold fell within a range between 5 and 18 ms. Across a given frequency band lamina, onset latencies varied systematically, with longest response latencies recorded medially, and progressively shorter latencies recorded progressively more laterally. 6. Binaural interaction types were systematically distributed within frequency-band laminae. A cluster of excitatory-excitatory (EE) was seen, covering approximately one-third of the mapped area.(ABSTRACT TRUNCATED AT 400 WORDS)

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
Hinterlegungsdatum: 20 Mai 2015 08:13
Letzte Änderung: 29 Jan 2019 08:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen