TU Darmstadt / ULB / TUbiblio

Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass

Brink, Tobias ; Şopu, Daniel ; Albe, Karsten (2015)
Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass.
In: Physical Review B, 91 (18)
doi: 10.1103/PhysRevB.91.184103
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Solid-state amorphization of crystalline copper nanolayers embedded in a Cu64Zr36 metallic glass is studied by molecular dynamics simulations for different orientations of the crystalline layer. We show that solid-state amorphization is driven by a reduction of interface energy, which compensates the bulk excess energy of the amorphous nanolayer with respect to the crystalline phase up to a critical layer thickness. A simple thermodynamic model is derived, which describes the simulation results in terms of orientation-dependent interface energies. Detailed analysis reveals the structure of the amorphous nanolayer and allows a comparison to a quenched copper melt, providing further insights into the origin of excess and interface energy.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Brink, Tobias ; Şopu, Daniel ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass
Sprache: Englisch
Publikationsjahr: 6 Mai 2015
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review B
Jahrgang/Volume einer Zeitschrift: 91
(Heft-)Nummer: 18
DOI: 10.1103/PhysRevB.91.184103
Kurzbeschreibung (Abstract):

Solid-state amorphization of crystalline copper nanolayers embedded in a Cu64Zr36 metallic glass is studied by molecular dynamics simulations for different orientations of the crystalline layer. We show that solid-state amorphization is driven by a reduction of interface energy, which compensates the bulk excess energy of the amorphous nanolayer with respect to the crystalline phase up to a critical layer thickness. A simple thermodynamic model is derived, which describes the simulation results in terms of orientation-dependent interface energies. Detailed analysis reveals the structure of the amorphous nanolayer and allows a comparison to a quenched copper melt, providing further insights into the origin of excess and interface energy.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen
Hinterlegungsdatum: 07 Mai 2015 08:43
Letzte Änderung: 26 Jul 2016 10:39
PPN:
Sponsoren: We would like to thank Mohammad Ghafari for many helpful discussions. The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through project Grant No. AL 578/13-1,, We would like to thank Mohammad Ghafari for many helpful discussions. The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through project Grant No. AL 578/13-1,
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen