Brink, Tobias ; Şopu, Daniel ; Albe, Karsten (2015)
Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass.
In: Physical Review B, 91 (18)
doi: 10.1103/PhysRevB.91.184103
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Solid-state amorphization of crystalline copper nanolayers embedded in a Cu64Zr36 metallic glass is studied by molecular dynamics simulations for different orientations of the crystalline layer. We show that solid-state amorphization is driven by a reduction of interface energy, which compensates the bulk excess energy of the amorphous nanolayer with respect to the crystalline phase up to a critical layer thickness. A simple thermodynamic model is derived, which describes the simulation results in terms of orientation-dependent interface energies. Detailed analysis reveals the structure of the amorphous nanolayer and allows a comparison to a quenched copper melt, providing further insights into the origin of excess and interface energy.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2015 |
Autor(en): | Brink, Tobias ; Şopu, Daniel ; Albe, Karsten |
Art des Eintrags: | Bibliographie |
Titel: | Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass |
Sprache: | Englisch |
Publikationsjahr: | 6 Mai 2015 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Physical Review B |
Jahrgang/Volume einer Zeitschrift: | 91 |
(Heft-)Nummer: | 18 |
DOI: | 10.1103/PhysRevB.91.184103 |
Kurzbeschreibung (Abstract): | Solid-state amorphization of crystalline copper nanolayers embedded in a Cu64Zr36 metallic glass is studied by molecular dynamics simulations for different orientations of the crystalline layer. We show that solid-state amorphization is driven by a reduction of interface energy, which compensates the bulk excess energy of the amorphous nanolayer with respect to the crystalline phase up to a critical layer thickness. A simple thermodynamic model is derived, which describes the simulation results in terms of orientation-dependent interface energies. Detailed analysis reveals the structure of the amorphous nanolayer and allows a comparison to a quenched copper melt, providing further insights into the origin of excess and interface energy. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen |
Hinterlegungsdatum: | 07 Mai 2015 08:43 |
Letzte Änderung: | 26 Jul 2016 10:39 |
PPN: | |
Sponsoren: | We would like to thank Mohammad Ghafari for many helpful discussions. The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through project Grant No. AL 578/13-1,, We would like to thank Mohammad Ghafari for many helpful discussions. The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through project Grant No. AL 578/13-1, |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |