TU Darmstadt / ULB / TUbiblio

On the Application of the Supervised Machine Learning to Trustworthiness Assessment

Hauke, Sascha ; Biedermann, Sebastian ; Mühlhäuser, Max ; Heider, Dominik (2013)
On the Application of the Supervised Machine Learning to Trustworthiness Assessment.
12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Melbourne, Australia (16.07.2013-18.07.2013)
doi: 10.1109/TrustCom.2013.5
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

State-of-the art trust and reputation systems seek to apply machine learning methods to overcome generalizability issues of experience-based Bayesian trust assessment. These approaches are, however, often model-centric instead of focussing on data and the complex adaptive system that is driven by reputation-based service selection. This entails the risk of unrealistic model assumptions. We outline the requirements for robust probabilistic trust assessment using supervised learning and apply a selection of estimators to a real-world data set, in order to show the effectiveness of supervised methods. Furthermore, we provide a representational mapping of estimator output to a belief logic representation for the modular integration of supervised methods with other trust assessment methodologies.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Autor(en): Hauke, Sascha ; Biedermann, Sebastian ; Mühlhäuser, Max ; Heider, Dominik
Art des Eintrags: Bibliographie
Titel: On the Application of the Supervised Machine Learning to Trustworthiness Assessment
Sprache: Englisch
Publikationsjahr: Juli 2013
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-13)
Buchtitel: Proceedings: 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications: TrustCom 2013
Veranstaltungstitel: 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications
Veranstaltungsort: Melbourne, Australia
Veranstaltungsdatum: 16.07.2013-18.07.2013
DOI: 10.1109/TrustCom.2013.5
Kurzbeschreibung (Abstract):

State-of-the art trust and reputation systems seek to apply machine learning methods to overcome generalizability issues of experience-based Bayesian trust assessment. These approaches are, however, often model-centric instead of focussing on data and the complex adaptive system that is driven by reputation-based service selection. This entails the risk of unrealistic model assumptions. We outline the requirements for robust probabilistic trust assessment using supervised learning and apply a selection of estimators to a real-world data set, in order to show the effectiveness of supervised methods. Furthermore, we provide a representational mapping of estimator output to a belief logic representation for the modular integration of supervised methods with other trust assessment methodologies.

Freie Schlagworte: - SST: CASED:, - SST - Area Smart Security and Trust
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
Hinterlegungsdatum: 20 Apr 2015 15:41
Letzte Änderung: 20 Jul 2021 09:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen