Hauke, Sascha ; Biedermann, Sebastian ; Mühlhäuser, Max ; Heider, Dominik (2013)
On the Application of the Supervised Machine Learning to Trustworthiness Assessment.
12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Melbourne, Australia (16.07.2013-18.07.2013)
doi: 10.1109/TrustCom.2013.5
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
State-of-the art trust and reputation systems seek to apply machine learning methods to overcome generalizability issues of experience-based Bayesian trust assessment. These approaches are, however, often model-centric instead of focussing on data and the complex adaptive system that is driven by reputation-based service selection. This entails the risk of unrealistic model assumptions. We outline the requirements for robust probabilistic trust assessment using supervised learning and apply a selection of estimators to a real-world data set, in order to show the effectiveness of supervised methods. Furthermore, we provide a representational mapping of estimator output to a belief logic representation for the modular integration of supervised methods with other trust assessment methodologies.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2013 |
Autor(en): | Hauke, Sascha ; Biedermann, Sebastian ; Mühlhäuser, Max ; Heider, Dominik |
Art des Eintrags: | Bibliographie |
Titel: | On the Application of the Supervised Machine Learning to Trustworthiness Assessment |
Sprache: | Englisch |
Publikationsjahr: | Juli 2013 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Proceedings of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-13) |
Buchtitel: | Proceedings: 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications: TrustCom 2013 |
Veranstaltungstitel: | 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications |
Veranstaltungsort: | Melbourne, Australia |
Veranstaltungsdatum: | 16.07.2013-18.07.2013 |
DOI: | 10.1109/TrustCom.2013.5 |
Kurzbeschreibung (Abstract): | State-of-the art trust and reputation systems seek to apply machine learning methods to overcome generalizability issues of experience-based Bayesian trust assessment. These approaches are, however, often model-centric instead of focussing on data and the complex adaptive system that is driven by reputation-based service selection. This entails the risk of unrealistic model assumptions. We outline the requirements for robust probabilistic trust assessment using supervised learning and apply a selection of estimators to a real-world data set, in order to show the effectiveness of supervised methods. Furthermore, we provide a representational mapping of estimator output to a belief logic representation for the modular integration of supervised methods with other trust assessment methodologies. |
Freie Schlagworte: | - SST: CASED:, - SST - Area Smart Security and Trust |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Telekooperation LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt |
Hinterlegungsdatum: | 20 Apr 2015 15:41 |
Letzte Änderung: | 20 Jul 2021 09:50 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |