Alfes, Claudia (2015)
CM values and Fourier coefficients of harmonic Maass forms.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In this thesis, we show that the Fourier coefficients of certain half-integral weight harmonic Maass forms are given as ``twisted traces'' of CM values of integral weight harmonic Maass forms. These results generalize work of Zagier, Bruinier, Funke, and Ono on traces of CM values of harmonic Maass forms of weight 0 and -2.
We utilize two theta lifts: one of them is a generalization of the Kudla-Millson theta lift considered by Bruinier, Funke, and Ono and the other one is defined using a theta kernel recently studied by Hövel.
Both of the lifts have interesting applications. For instance, we show that the vanishing of the central derivative of the Hasse-Weil zeta function of an elliptic curve over the rational numbers is encoded by the Fourier coefficients of a harmonic Maass form arising from the Weierstrass zeta-function of the elliptic curve.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2015 | ||||
Autor(en): | Alfes, Claudia | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | CM values and Fourier coefficients of harmonic Maass forms | ||||
Sprache: | Englisch | ||||
Referenten: | Bruinier, Prof. Dr. Jan Hendrik ; Ono, Prof PhD Ken ; Scheithauer, Pro.f Dr. Nils | ||||
Publikationsjahr: | 2015 | ||||
Datum der mündlichen Prüfung: | 5 Februar 2015 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4458 | ||||
Kurzbeschreibung (Abstract): | In this thesis, we show that the Fourier coefficients of certain half-integral weight harmonic Maass forms are given as ``twisted traces'' of CM values of integral weight harmonic Maass forms. These results generalize work of Zagier, Bruinier, Funke, and Ono on traces of CM values of harmonic Maass forms of weight 0 and -2. We utilize two theta lifts: one of them is a generalization of the Kudla-Millson theta lift considered by Bruinier, Funke, and Ono and the other one is defined using a theta kernel recently studied by Hövel. Both of the lifts have interesting applications. For instance, we show that the vanishing of the central derivative of the Hasse-Weil zeta function of an elliptic curve over the rational numbers is encoded by the Fourier coefficients of a harmonic Maass form arising from the Weierstrass zeta-function of the elliptic curve. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-44587 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra |
||||
Hinterlegungsdatum: | 22 Mär 2015 20:55 | ||||
Letzte Änderung: | 22 Mär 2015 20:55 | ||||
PPN: | |||||
Referenten: | Bruinier, Prof. Dr. Jan Hendrik ; Ono, Prof PhD Ken ; Scheithauer, Pro.f Dr. Nils | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 5 Februar 2015 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |