Shu, B. ; Dammel, Frank ; Stephan, Peter (2008)
Phase Change Model for Two-Phase Fluid Flow Based on the Volume of Fluid Method.
Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer.
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, a model for the phase change in two-phase fluid flow is presented. The position of the interface is captured implicitly with the volume of fluid (VOF) method. The mass conservation equation and the Navier-Stokes equations are solved over the entire computational domain. Additionally, the energy equation is solved in the area which is occupied by vapor, while the temperature in the liquid and at the interface is assumed to be at a constant saturation temperature. Volumetric source terms are derived in the framework of the finite volume method and introduced into the conservation equations to model the phase change. Test simulation of the 1D Stefan-Problem agrees perfectly with the analytical result. The second test case is the 2D axisymmetric film boiling. The results of the numerical simulations agree well with the result calculated with the correlation.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2008 |
Autor(en): | Shu, B. ; Dammel, Frank ; Stephan, Peter |
Art des Eintrags: | Bibliographie |
Titel: | Phase Change Model for Two-Phase Fluid Flow Based on the Volume of Fluid Method |
Sprache: | Deutsch |
Publikationsjahr: | 2008 |
Veranstaltungstitel: | Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer |
URL / URN: | http://dx.doi.org/10.1615/ICHMT.2008.CHT.720 |
Kurzbeschreibung (Abstract): | In this paper, a model for the phase change in two-phase fluid flow is presented. The position of the interface is captured implicitly with the volume of fluid (VOF) method. The mass conservation equation and the Navier-Stokes equations are solved over the entire computational domain. Additionally, the energy equation is solved in the area which is occupied by vapor, while the temperature in the liquid and at the interface is assumed to be at a constant saturation temperature. Volumetric source terms are derived in the framework of the finite volume method and introduced into the conservation equations to model the phase change. Test simulation of the 1D Stefan-Problem agrees perfectly with the analytical result. The second test case is the 2D axisymmetric film boiling. The results of the numerical simulations agree well with the result calculated with the correlation. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau > Fachgebiet für Technische Thermodynamik (TTD) Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI) 16 Fachbereich Maschinenbau Zentrale Einrichtungen Exzellenzinitiative Exzellenzinitiative > Exzellenzcluster |
Hinterlegungsdatum: | 17 Mär 2015 14:57 |
Letzte Änderung: | 17 Mär 2015 14:57 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |