Bornhorst, Nils (2015)
Energy-Efficient Distributed Multicast Beamforming Using Iterative Second-Order Cone Programming.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In multi-user (MU) downlink beamforming, a high spectral efficiency along with a low transmit power is achieved by separating multiple users in space rather than in time or frequency using spatially selective transmit beams. For streaming media applications, multi-group multicast (MGM) downlink beamforming is a promising approach to exploit the broadcasting property of the wireless medium to transmit the same information to a group of users. To limit inter-group interference, the individual streams intended for different multicast groups are spatially separated using MGM downlink beamforming. Spatially selective downlink beamforming requires the employment of an array of multiple antennas at the base station (BS). The hardware costs associated with the use of multiple antennas may be prohibitive in practice. A way to avoid the expensive employment of multiple antennas at the BS is to exploit user cooperation in wireless networks where multiple single-antenna users act as relays and take over the role of antenna elements in a virtual distributed antenna array.
In both downlink beamforming and distributed relay beamforming, several approaches to design the transmit beams exist. In many scenarios, minimizing the transmit power has a higher priority than maximizing throughput. This is the case, e.g., in downlink beamforming, when operators aim at reducing their operational expenditures and their carbon footprint, or in distributed beamforming when users are only willing to cooperate when the battery consumption of their devices is kept at a minimum level. Then, the transmit beams are designed as the solution of a quality-of-service-constrained (QoS-constrained) power minimization problem. The goal of this optimization approach is to minimize the total transmitted power (at the BS or at the relays) while guaranteeing a predefined QoS at the destination users. In many scenarios with a high relevance in practice such as MGM downlink beamforming and MU peer-to-peer (MUP2P) relay beamforming, the QoS-constrained power minimization problem is a nonconvex optimization problem which cannot be solved optimally in polynomial time. In state-of-the-art methods, the nonconvex problem is therefore approximated by a convex one which is easier to solve. As the number of users increases, however, these approximations become more and more inaccurate leading to severe performance degradation and problem infeasibility.
In this dissertation, we therefore propose a novel framework of iterative optimization schemes where a convex approximation of the original problem is successively improved. In each iteration of the proposed schemes, a convex approximation of the original problem is solved and then adapted to the solution obtained in this iteration. We prove that by this means, the approximate solution is improved from iteration to iteration. In this way, an approximate solution which is much closer to the optimal solution of the original problem than in state-of-the-art methods is usually obtained. Moreover, the convex approximation may be infeasible in state-of-the-art methods even if the original problem is feasible. The proposed iterative scheme is therefore extended such that it can also be used to find a feasible initial approximation of the original problem. Simulations results reveal that in relay beamforming scenarios with a moderate to a large number of destination users, the proposed scheme substantially outperforms state-of-the-art methods in terms of total transmitted relay power and problem feasibility. In MGM downlink beamforming scenarios with a large number of users, the proposed technique achieves the same performance as the state-of-the-art methods at a substantially reduced computational complexity.
Several extensions of this basic iterative convex approximation technique are proposed in this dissertation: The feasibility search is extended to an admission control scheme where a minimum number of destination users is determined for which service has to be denied in case of shortage of spectral resources. Furthermore, a non-trivial extension of our iterative method is proposed to maintain its applicability in the case where only limited information about the state of the channels in the network is available. Finally, a complexity reduction is proposed to turn the proposed algorithms into computational efficient ones which are suitable for real time application in practice.
Due to its wide-ranging applicability, we also consider filter-and-forward (FF) relay beamforming where the relays are equipped with finite impulse response (FIR) filters and single-carrier (SC) transmission over frequency selective channels is performed. In this scenario, the signal received at the destination nodes is contaminated by inter-symbol interference (ISI). Using the FIR filters at the relays, the frequency selective channels are equalized to some extent such that the ISI at the destination nodes can be mitigated. In previous works, the FF relay networks have been assumed to be perfectly synchronized. Perfect timing synchronization is, however, not possible in MU FF relay networks as there exists no single point of reference. This synchronization issue has barely been addressed in the literature. In this dissertation, we consider FF beamforming in asynchronous MUP2P and MGM relay networks and extend the FF scheme by incorporating individual adaptive decoding delays at the destinations. Using these decoding delays, the destination users can individually adapt to the different link delays in the asynchronous network and thereby mitigate residual ISI. We again consider the QoS-constrained power minimization problem where now the filter coefficients at the relays, which are continuous variables, and the individual decoding delays at the destinations, which are discrete variables, are jointly optimized. This optimization problem is a nonconvex mixed-integer programming (MIP) problem which is generally hard to solve optimally. We propose (i) a customized branch-and-cut (BnC) method yielding a lower bound on the total transmitted relay power as a benchmark and (ii) a low-complexity deflation algorithm providing an approximate solution for implementation in practice. The deflation method is based on the proposed iterative convex approximation approach mentioned above. Our simulation results show that the approximate solution obtained using the proposed deflation scheme is close to optimal and outperforms the solutions obtained by state-of-the-art schemes which do not make use of adaptive decoding delays.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2015 | ||||
Autor(en): | Bornhorst, Nils | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Energy-Efficient Distributed Multicast Beamforming Using Iterative Second-Order Cone Programming | ||||
Sprache: | Englisch | ||||
Referenten: | Pesavento, Prof. Marius ; Haardt, Prof. Martin ; Klein, Prof. Anja ; Schöps, Prof. Sebastian | ||||
Publikationsjahr: | 2015 | ||||
Datum der mündlichen Prüfung: | 12 Dezember 2014 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4387 | ||||
Kurzbeschreibung (Abstract): | In multi-user (MU) downlink beamforming, a high spectral efficiency along with a low transmit power is achieved by separating multiple users in space rather than in time or frequency using spatially selective transmit beams. For streaming media applications, multi-group multicast (MGM) downlink beamforming is a promising approach to exploit the broadcasting property of the wireless medium to transmit the same information to a group of users. To limit inter-group interference, the individual streams intended for different multicast groups are spatially separated using MGM downlink beamforming. Spatially selective downlink beamforming requires the employment of an array of multiple antennas at the base station (BS). The hardware costs associated with the use of multiple antennas may be prohibitive in practice. A way to avoid the expensive employment of multiple antennas at the BS is to exploit user cooperation in wireless networks where multiple single-antenna users act as relays and take over the role of antenna elements in a virtual distributed antenna array. In both downlink beamforming and distributed relay beamforming, several approaches to design the transmit beams exist. In many scenarios, minimizing the transmit power has a higher priority than maximizing throughput. This is the case, e.g., in downlink beamforming, when operators aim at reducing their operational expenditures and their carbon footprint, or in distributed beamforming when users are only willing to cooperate when the battery consumption of their devices is kept at a minimum level. Then, the transmit beams are designed as the solution of a quality-of-service-constrained (QoS-constrained) power minimization problem. The goal of this optimization approach is to minimize the total transmitted power (at the BS or at the relays) while guaranteeing a predefined QoS at the destination users. In many scenarios with a high relevance in practice such as MGM downlink beamforming and MU peer-to-peer (MUP2P) relay beamforming, the QoS-constrained power minimization problem is a nonconvex optimization problem which cannot be solved optimally in polynomial time. In state-of-the-art methods, the nonconvex problem is therefore approximated by a convex one which is easier to solve. As the number of users increases, however, these approximations become more and more inaccurate leading to severe performance degradation and problem infeasibility. In this dissertation, we therefore propose a novel framework of iterative optimization schemes where a convex approximation of the original problem is successively improved. In each iteration of the proposed schemes, a convex approximation of the original problem is solved and then adapted to the solution obtained in this iteration. We prove that by this means, the approximate solution is improved from iteration to iteration. In this way, an approximate solution which is much closer to the optimal solution of the original problem than in state-of-the-art methods is usually obtained. Moreover, the convex approximation may be infeasible in state-of-the-art methods even if the original problem is feasible. The proposed iterative scheme is therefore extended such that it can also be used to find a feasible initial approximation of the original problem. Simulations results reveal that in relay beamforming scenarios with a moderate to a large number of destination users, the proposed scheme substantially outperforms state-of-the-art methods in terms of total transmitted relay power and problem feasibility. In MGM downlink beamforming scenarios with a large number of users, the proposed technique achieves the same performance as the state-of-the-art methods at a substantially reduced computational complexity. Several extensions of this basic iterative convex approximation technique are proposed in this dissertation: The feasibility search is extended to an admission control scheme where a minimum number of destination users is determined for which service has to be denied in case of shortage of spectral resources. Furthermore, a non-trivial extension of our iterative method is proposed to maintain its applicability in the case where only limited information about the state of the channels in the network is available. Finally, a complexity reduction is proposed to turn the proposed algorithms into computational efficient ones which are suitable for real time application in practice. Due to its wide-ranging applicability, we also consider filter-and-forward (FF) relay beamforming where the relays are equipped with finite impulse response (FIR) filters and single-carrier (SC) transmission over frequency selective channels is performed. In this scenario, the signal received at the destination nodes is contaminated by inter-symbol interference (ISI). Using the FIR filters at the relays, the frequency selective channels are equalized to some extent such that the ISI at the destination nodes can be mitigated. In previous works, the FF relay networks have been assumed to be perfectly synchronized. Perfect timing synchronization is, however, not possible in MU FF relay networks as there exists no single point of reference. This synchronization issue has barely been addressed in the literature. In this dissertation, we consider FF beamforming in asynchronous MUP2P and MGM relay networks and extend the FF scheme by incorporating individual adaptive decoding delays at the destinations. Using these decoding delays, the destination users can individually adapt to the different link delays in the asynchronous network and thereby mitigate residual ISI. We again consider the QoS-constrained power minimization problem where now the filter coefficients at the relays, which are continuous variables, and the individual decoding delays at the destinations, which are discrete variables, are jointly optimized. This optimization problem is a nonconvex mixed-integer programming (MIP) problem which is generally hard to solve optimally. We propose (i) a customized branch-and-cut (BnC) method yielding a lower bound on the total transmitted relay power as a benchmark and (ii) a low-complexity deflation algorithm providing an approximate solution for implementation in practice. The deflation method is based on the proposed iterative convex approximation approach mentioned above. Our simulation results show that the approximate solution obtained using the proposed deflation scheme is close to optimal and outperforms the solutions obtained by state-of-the-art schemes which do not make use of adaptive decoding delays. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | Beamforming, Relay Networks, Multicasting, Convex Optimization, Second-Order Cone Programming, Mixed-Integer Programming, Asynchronous Relay Networks, Adaptive Decoding Delays | ||||
URN: | urn:nbn:de:tuda-tuprints-43870 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
||||
Hinterlegungsdatum: | 01 Mär 2015 20:55 | ||||
Letzte Änderung: | 01 Mär 2015 20:55 | ||||
PPN: | |||||
Referenten: | Pesavento, Prof. Marius ; Haardt, Prof. Martin ; Klein, Prof. Anja ; Schöps, Prof. Sebastian | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 12 Dezember 2014 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |