TU Darmstadt / ULB / TUbiblio

Fast Iterative Solution of Poisson Equation with Neumann Boundary Conditions in Nonorthogonal Curvilinear Coordinate Systems by a Multiple Grid Method

Rieger, H. ; Projahn, U. ; Beer, Hans (1983)
Fast Iterative Solution of Poisson Equation with Neumann Boundary Conditions in Nonorthogonal Curvilinear Coordinate Systems by a Multiple Grid Method.
In: Numerical Heat Transfer, 6 (1)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A simple multiple grid (MG) technique has been used to solve the linear system of equations arising from the finite-difference discretization of the Neumann problem for elliptic Poisson equations formulated in nonorthogonal curvilinear coordinate systems. Fast, flexible, and simple solution methods for such problems are mandatory when they should act as, for example, pressure solvers in hydrodynamic codes for incompressible fluid flow. The robustness of the solution method chosen can be derived from the fact that only strong nonorthogonal grids have some influence on the asymptotic convergence rate. Problems including patched coordinate systems-for example, with interfaces describing material discontinuities-can also be handled without loss of efficiency.

Typ des Eintrags: Artikel
Erschienen: 1983
Autor(en): Rieger, H. ; Projahn, U. ; Beer, Hans
Art des Eintrags: Bibliographie
Titel: Fast Iterative Solution of Poisson Equation with Neumann Boundary Conditions in Nonorthogonal Curvilinear Coordinate Systems by a Multiple Grid Method
Sprache: Englisch
Publikationsjahr: 1983
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Numerical Heat Transfer
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 1
URL / URN: http://dx.doi.org/10.1080/01495728308963070
Kurzbeschreibung (Abstract):

A simple multiple grid (MG) technique has been used to solve the linear system of equations arising from the finite-difference discretization of the Neumann problem for elliptic Poisson equations formulated in nonorthogonal curvilinear coordinate systems. Fast, flexible, and simple solution methods for such problems are mandatory when they should act as, for example, pressure solvers in hydrodynamic codes for incompressible fluid flow. The robustness of the solution method chosen can be derived from the fact that only strong nonorthogonal grids have some influence on the asymptotic convergence rate. Problems including patched coordinate systems-for example, with interfaces describing material discontinuities-can also be handled without loss of efficiency.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Technische Thermodynamik (TTD)
Hinterlegungsdatum: 26 Feb 2015 13:24
Letzte Änderung: 05 Aug 2019 13:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen