TU Darmstadt / ULB / TUbiblio

POD-Galerkin Modeling for Incompressible Flows with Stochastic Boundary Conditions

Ullmann, Sebastian (2014)
POD-Galerkin Modeling for Incompressible Flows with Stochastic Boundary Conditions.
Technische Universität Darmstadt
Dissertation, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In the context of the numerical solution of parametrized partial differential equations, a proper orthogonal decomposition (POD) provides a basis of a subspace of the solution space. The method relies on a singular value decomposition of a snapshot matrix, which contains the numerical solutions at predefined parameter values. Often a sufficiently accurate representation of the solution can be given by a linear combination of a small number of POD basis functions. In this case, using POD basis functions as test and trial functions in a Galerkin projection leads to POD-Galerkin reduced-order models. Such models are derived and tested in this thesis for flow problems governed by the incompressible Navier-Stokes equations with stochastic Dirichlet boundary conditions.

In the first part of the thesis, POD-Galerkin reduced-order models are developed for unsteady deterministic problems of increasing complexity: heat conduction, isothermal flow, and thermoconvective flow. Here, time acts as a parameter, so that the snapshot matrix consists of discrete solutions at different times. Special attention is paid to the reduced-order computation of the pressure field, which is realized by projecting a discrete pressure Poisson equation onto a pressure POD basis. It is demonstrated that the reduced-order solutions of the considered problems converge toward the underlying snapshots when the dimension of the POD basis is increased.

The second part of the thesis is devoted to a steady thermally driven flow problem with a temperature Dirichlet boundary condition given by a spatially correlated random field. In order to compute statistical quantities of interest, the stochastic problem is split into separate deterministic sub-problems by means of a Karhunen-Loeve parametrization of the boundary data and subsequent stochastic collocation on a sparse grid. The sub-problems are solved with suitable POD-Galerkin models. Different methods to handle the parametrized Dirichlet conditions are introduced and compared. The use of POD-Galerkin reduced-order models leads to a significant speed-up of the overall computational process compared to a standard finite element model.

Typ des Eintrags: Dissertation
Erschienen: 2014
Autor(en): Ullmann, Sebastian
Art des Eintrags: Bibliographie
Titel: POD-Galerkin Modeling for Incompressible Flows with Stochastic Boundary Conditions
Sprache: Englisch
Referenten: Lang, Prof. Dr. Jens
Publikationsjahr: 2014
Ort: München
Verlag: Verlag Dr. Hut
Datum der mündlichen Prüfung: 2014
Zugehörige Links:
Kurzbeschreibung (Abstract):

In the context of the numerical solution of parametrized partial differential equations, a proper orthogonal decomposition (POD) provides a basis of a subspace of the solution space. The method relies on a singular value decomposition of a snapshot matrix, which contains the numerical solutions at predefined parameter values. Often a sufficiently accurate representation of the solution can be given by a linear combination of a small number of POD basis functions. In this case, using POD basis functions as test and trial functions in a Galerkin projection leads to POD-Galerkin reduced-order models. Such models are derived and tested in this thesis for flow problems governed by the incompressible Navier-Stokes equations with stochastic Dirichlet boundary conditions.

In the first part of the thesis, POD-Galerkin reduced-order models are developed for unsteady deterministic problems of increasing complexity: heat conduction, isothermal flow, and thermoconvective flow. Here, time acts as a parameter, so that the snapshot matrix consists of discrete solutions at different times. Special attention is paid to the reduced-order computation of the pressure field, which is realized by projecting a discrete pressure Poisson equation onto a pressure POD basis. It is demonstrated that the reduced-order solutions of the considered problems converge toward the underlying snapshots when the dimension of the POD basis is increased.

The second part of the thesis is devoted to a steady thermally driven flow problem with a temperature Dirichlet boundary condition given by a spatially correlated random field. In order to compute statistical quantities of interest, the stochastic problem is split into separate deterministic sub-problems by means of a Karhunen-Loeve parametrization of the boundary data and subsequent stochastic collocation on a sparse grid. The sub-problems are solved with suitable POD-Galerkin models. Different methods to handle the parametrized Dirichlet conditions are introduced and compared. The use of POD-Galerkin reduced-order models leads to a significant speed-up of the overall computational process compared to a standard finite element model.

Zusätzliche Informationen:

Zugl.: Darmstadt, Techn. Univ., Diss. 2014

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Zentrale Einrichtungen
Hinterlegungsdatum: 18 Jan 2015 20:55
Letzte Änderung: 02 Jul 2024 14:52
PPN:
Referenten: Lang, Prof. Dr. Jens
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 2014
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen