Werner, Fabian (2014)
Vector Valued Hecke Theory.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In this thesis we study vector valued modular forms with respect to certain representations. We define Hecke operators and we prove a multiplicity one theorem. This works generally for representations with a kernel that contains some principal congruence subgroup. Afterwards, we focus on the Weil representation. We study the effect of Hecke operators on vector valued Eisenstein series and theta series. Finally, we recall the concept of an isotropic oldform. We show that in certain cases, in fact, all forms are isotropic oldforms i.e. are induced by modular forms on smaller vector spaces.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2014 | ||||
Autor(en): | Werner, Fabian | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Vector Valued Hecke Theory | ||||
Sprache: | Englisch | ||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Bruinier, Prof. Dr. Jan | ||||
Publikationsjahr: | 28 Oktober 2014 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 16 Oktober 2014 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4238 | ||||
Kurzbeschreibung (Abstract): | In this thesis we study vector valued modular forms with respect to certain representations. We define Hecke operators and we prove a multiplicity one theorem. This works generally for representations with a kernel that contains some principal congruence subgroup. Afterwards, we focus on the Weil representation. We study the effect of Hecke operators on vector valued Eisenstein series and theta series. Finally, we recall the concept of an isotropic oldform. We show that in certain cases, in fact, all forms are isotropic oldforms i.e. are induced by modular forms on smaller vector spaces. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-42384 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra |
||||
Hinterlegungsdatum: | 23 Nov 2014 20:55 | ||||
Letzte Änderung: | 23 Nov 2014 20:55 | ||||
PPN: | |||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Bruinier, Prof. Dr. Jan | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 16 Oktober 2014 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |