TU Darmstadt / ULB / TUbiblio

An internal-variable-based interface model for the charging process of ferroelectrets

Xu, Bai-Xiang ; Seggern, Heinz von ; Zhukov, Sergey ; Gross, Dietmar (2014)
An internal-variable-based interface model for the charging process of ferroelectrets.
In: European Journal of Mechanics - A/Solids, 48
doi: 10.1016/j.euromechsol.2013.12.011
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Electrically charged micro-porous foams, referred to as ferroelectrets, exhibit a very large longitudinal piezoelectric coefficient. In the present configuration the microporous material is sandwiched between two solid materials which can block the motion of charges. During the charging process of the ferroelectret electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduce free charge pairs. These pairs are separated by the electric field induced by the applied voltage. Depending on the polarity they are relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. Charging of the interfaces is key for the observed piezoelectricity of ferroelectrets. In the present article, an internal-variable-based interface model is proposed to simulate the charging and discharging of ferroelectrets. The model includes also the electrostatic force between the interface charges. For the bulk behavior, an electromechanical model based on the Maxwell stress is used. In particular, a 2D nonlinear finite element implementation of the models is elaborated, which involves a novel embedded interface element. Simulations of a sandwiched ferroelectret show that the interface model can reproduce the hysteresis behavior of the interface charge density, as it is demonstrated by the comparison with the corresponding experimental results. The model is further used to numerically study the influences of geometric, elastic and electrical parameters on the hysteresis and the piezoelectric coefficients. The models are also used to simulate a lens-shaped ferroelectret unit.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Xu, Bai-Xiang ; Seggern, Heinz von ; Zhukov, Sergey ; Gross, Dietmar
Art des Eintrags: Bibliographie
Titel: An internal-variable-based interface model for the charging process of ferroelectrets
Sprache: Englisch
Publikationsjahr: 2014
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: European Journal of Mechanics - A/Solids
Jahrgang/Volume einer Zeitschrift: 48
DOI: 10.1016/j.euromechsol.2013.12.011
Kurzbeschreibung (Abstract):

Electrically charged micro-porous foams, referred to as ferroelectrets, exhibit a very large longitudinal piezoelectric coefficient. In the present configuration the microporous material is sandwiched between two solid materials which can block the motion of charges. During the charging process of the ferroelectret electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduce free charge pairs. These pairs are separated by the electric field induced by the applied voltage. Depending on the polarity they are relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. Charging of the interfaces is key for the observed piezoelectricity of ferroelectrets. In the present article, an internal-variable-based interface model is proposed to simulate the charging and discharging of ferroelectrets. The model includes also the electrostatic force between the interface charges. For the bulk behavior, an electromechanical model based on the Maxwell stress is used. In particular, a 2D nonlinear finite element implementation of the models is elaborated, which involves a novel embedded interface element. Simulations of a sandwiched ferroelectret show that the interface model can reproduce the hysteresis behavior of the interface charge density, as it is demonstrated by the comparison with the corresponding experimental results. The model is further used to numerically study the influences of geometric, elastic and electrical parameters on the hysteresis and the piezoelectric coefficients. The models are also used to simulate a lens-shaped ferroelectret unit.

Freie Schlagworte: Hysteresis, Internal variable, Piezoelectric constant
Zusätzliche Informationen:

SFB 595 Cooperation C6, B7 Frontiers in Finite-Deformation Electromechanics

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektronische Materialeigenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung > Teilprojekt B7:Polarisation und Ladung in elektrisch ermüdeten Ferroelektrika
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C6: Mikromechanische Simulationen von Interaktion der Punktdefekte mit Domänenstruktur in Ferroelektrika
Hinterlegungsdatum: 24 Okt 2014 13:07
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: The authors would like to thank the German Research Foundation (DFG) for its financial support in the framework of the Collaborative Research Center (SFB 595) and the DFG project SE 941/17-1.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen