TU Darmstadt / ULB / TUbiblio

A constraint-free phase field model for ferromagnetic domain evolution

Yi, Min ; Xu, Bai-Xiang (2014)
A constraint-free phase field model for ferromagnetic domain evolution.
In: Proceedings of Royal Society A-Mathematical Physical and Engineering Sciences, 470 (2171)
doi: 10.1098/rspa.2014.0517
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A continuum constraint-free phase field model is proposed to simulate the magnetic domain evolution in ferromagnetic materials. The model takes the polar and azimuthal angles (ϑ1,ϑ2), instead of the magnetization unit vector m(m1,m2,m3), as the order parameters. In this way, the constraint on the magnetization magnitude can be exactly satisfied automatically, and no special numerical treatment on the phase field evolution is needed. The phase field model is developed from a thermodynamic framework which involves a configurational force system for ϑ1 and ϑ2. A combination of the configurational force balance and the second law of thermodynamics leads to thermodynamically consistent constitutive relations and a generalized evolution equation for the order parameters (ϑ1,ϑ2). Beneficial from the constraint-free model, the three-dimensional finite-element implementation is straightforward, and the degrees of freedom are reduced by one. The model is shown to be capable of reproducing the damping-dependent switching dynamics, and the formation and evolution of domains and vortices in ferromagnetic materials under the external magnetic or mechanical loading. Particularly, the calculated out-of-plane component of magnetization in a vortex is verified by the corresponding experimental results, as well as the motion of the vortex under a magnetic field.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Yi, Min ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: A constraint-free phase field model for ferromagnetic domain evolution
Sprache: Englisch
Publikationsjahr: 10 September 2014
Verlag: The Royal Society Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of Royal Society A-Mathematical Physical and Engineering Sciences
Jahrgang/Volume einer Zeitschrift: 470
(Heft-)Nummer: 2171
DOI: 10.1098/rspa.2014.0517
Kurzbeschreibung (Abstract):

A continuum constraint-free phase field model is proposed to simulate the magnetic domain evolution in ferromagnetic materials. The model takes the polar and azimuthal angles (ϑ1,ϑ2), instead of the magnetization unit vector m(m1,m2,m3), as the order parameters. In this way, the constraint on the magnetization magnitude can be exactly satisfied automatically, and no special numerical treatment on the phase field evolution is needed. The phase field model is developed from a thermodynamic framework which involves a configurational force system for ϑ1 and ϑ2. A combination of the configurational force balance and the second law of thermodynamics leads to thermodynamically consistent constitutive relations and a generalized evolution equation for the order parameters (ϑ1,ϑ2). Beneficial from the constraint-free model, the three-dimensional finite-element implementation is straightforward, and the degrees of freedom are reduced by one. The model is shown to be capable of reproducing the damping-dependent switching dynamics, and the formation and evolution of domains and vortices in ferromagnetic materials under the external magnetic or mechanical loading. Particularly, the calculated out-of-plane component of magnetization in a vortex is verified by the corresponding experimental results, as well as the motion of the vortex under a magnetic field.

Freie Schlagworte: phase field model, ferromagnetic materials, domain evolution, vortex, constraint, coupled problems
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
Hinterlegungsdatum: 23 Okt 2014 12:21
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: The support from the LOEWE research cluster RESPONSE (Hessen, Germany), the China Scholarship Council and the Innovation Foundation of BUAA for PhD Graduates (YWF-14-YJSY-052) is acknowledged.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen