TU Darmstadt / ULB / TUbiblio

Macro- and microscopic properties of strontium doped indium oxide

Nikolaenko, Y. M. ; Kuzovlev, Y. E. ; Medvedev, Y. V. ; Mezin, N. I. ; Fasel, C. ; Gurlo, A. ; Schlicker, L. ; Bayer, T. J. M. ; Genenko, Y. A. (2014)
Macro- and microscopic properties of strontium doped indium oxide.
In: Journal of Applied Physics, 116 (4)
doi: 10.1063/1.4891216
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In2O3:(SrO)x were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn2O4. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10−13 cm2/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Nikolaenko, Y. M. ; Kuzovlev, Y. E. ; Medvedev, Y. V. ; Mezin, N. I. ; Fasel, C. ; Gurlo, A. ; Schlicker, L. ; Bayer, T. J. M. ; Genenko, Y. A.
Art des Eintrags: Bibliographie
Titel: Macro- and microscopic properties of strontium doped indium oxide
Sprache: Englisch
Publikationsjahr: 28 Juli 2014
Verlag: AIP Publishing LLC
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 116
(Heft-)Nummer: 4
DOI: 10.1063/1.4891216
Kurzbeschreibung (Abstract):

Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In2O3:(SrO)x were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn2O4. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10−13 cm2/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

Freie Schlagworte: Doping, Ozone, Indium, Electrical resistivity,; Vacancies
Zusätzliche Informationen:

SFB 595 Cooperation A4, C5, D3

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C5: Phänomenologische Modellierung von Injektion, Transport und Rekombination in Bauelementen aus organischen Halbleitern sowie aus nichtorganischen Ferroelektrika
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften > Teilprojekt D3: Funktion und Ermüdung oxidischer Elektroden in organischen Leuchtdioden
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 29 Jul 2014 12:28
Letzte Änderung: 29 Mär 2015 17:35
PPN:
Sponsoren: We recognize providing a facility for point contact measurements with different metal pins and useful discussions with Professor A. Klein. , This work was partly supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 595 “Electrical Fatigue in Functional Materials.”
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen