Piasecki, Piotr (2014)
Strongly interacting matter in a finite volume.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In this work we study the Polyakov-Quark-Meson model for N_f=2 and N_c=3 in a finite volume with the Functional Renormalization Group in a local potential approximation. We choose for the spatial momentum modes periodic and antiperiodic boundary conditions. Because of the lack of a zero mode in the case of antiperiodic boundary conditions we realize a clearly different behavior of the results. We solve the gap-equations for the Polyakov-loop-variable \Phi and its conjugate \Phi^* for different box sizes L as a function of the temperature $T$ and the chemical potential \mu. With these we calculate the pion decay constant and obtain the phase diagram and the pressure. We also study whether the results converge with increasing truncation order N and whether the finite volume results converge with increasing volume size to those of the infinite volume case. For the case of an infinite volume we further solve the gap-equations on all scales. Therefore, we include for the solution of the flow equation an indirect scale dependence of the Polyakov-loop-variable. With this we extend recent approaches which solve the gap-equations only at the infrared cutoff. We calculate with this several thermodynamic variables like the pressure and the trace anomaly. Additionally, we include a non-zero magnetic field and study the possibility of an inverse magnetic catalysis under variation of T_0 with the magnetic field.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2014 | ||||
Autor(en): | Piasecki, Piotr | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Strongly interacting matter in a finite volume | ||||
Sprache: | Englisch | ||||
Referenten: | von Smekal, PD. Dr. Lorenz ; Wambach, Prof. Dr. Jochen | ||||
Publikationsjahr: | 2014 | ||||
Datum der mündlichen Prüfung: | 14 Mai 2014 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4039 | ||||
Kurzbeschreibung (Abstract): | In this work we study the Polyakov-Quark-Meson model for N_f=2 and N_c=3 in a finite volume with the Functional Renormalization Group in a local potential approximation. We choose for the spatial momentum modes periodic and antiperiodic boundary conditions. Because of the lack of a zero mode in the case of antiperiodic boundary conditions we realize a clearly different behavior of the results. We solve the gap-equations for the Polyakov-loop-variable \Phi and its conjugate \Phi^* for different box sizes L as a function of the temperature $T$ and the chemical potential \mu. With these we calculate the pion decay constant and obtain the phase diagram and the pressure. We also study whether the results converge with increasing truncation order N and whether the finite volume results converge with increasing volume size to those of the infinite volume case. For the case of an infinite volume we further solve the gap-equations on all scales. Therefore, we include for the solution of the flow equation an indirect scale dependence of the Polyakov-loop-variable. With this we extend recent approaches which solve the gap-equations only at the infrared cutoff. We calculate with this several thermodynamic variables like the pressure and the trace anomaly. Additionally, we include a non-zero magnetic field and study the possibility of an inverse magnetic catalysis under variation of T_0 with the magnetic field. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-40399 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik | ||||
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Kernphysik |
||||
Hinterlegungsdatum: | 27 Jul 2014 19:55 | ||||
Letzte Änderung: | 27 Jul 2014 19:55 | ||||
PPN: | |||||
Referenten: | von Smekal, PD. Dr. Lorenz ; Wambach, Prof. Dr. Jochen | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 14 Mai 2014 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |