Kaspar, Jan ; Graczyk-Zajac, Magdalena ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Riedel, Ralf (2014)
Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties.
In: Journal of Power Sources, 269
doi: 10.1016/j.jpowsour.2014.06.089
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Silicon oxycarbide/nano-silicon composites (SiOC/nSi) are prepared by mixing of nano-sized silicon, either crystalline (nSi_c) or amorphous (nSi_a), with commercially available polyorganosiloxane RD-684a and subsequent pyrolysis. The influence of the type of nano-silicon, namely crystalline vs. amorphous, on the electrochemical properties and performance is analyzed and correlated with the corresponding composite microstructure. In the case of crystalline nano-silicon, a high reversible capacity of 905 mAh g−1 is registered, whereas that for amorphous nano-silicon embedment reaches 704 mAh g−1. However, regarding the cycling stability, SiOC/nSi_c shows a significant capacity fading upon continuous cycling, related to SiOC matrix failure. The host phase is not able to accommodate the arising mechanical stresses upon Si grain expansion and contraction when alloying/dealloying with Li. SiOC/nSi_a on the contrary, demonstrates a stable cycling performance for up to 100 cycles. This excellent performance is explained by the enhanced matrix integrity of the compound, rationalized by a smaller size of the embedded crystallized Si grains and an intrinsically enhanced electrical conductivity due to the formation of SiC.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Kaspar, Jan ; Graczyk-Zajac, Magdalena ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Riedel, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties |
Sprache: | Englisch |
Publikationsjahr: | 10 Dezember 2014 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Power Sources |
Jahrgang/Volume einer Zeitschrift: | 269 |
DOI: | 10.1016/j.jpowsour.2014.06.089 |
Kurzbeschreibung (Abstract): | Silicon oxycarbide/nano-silicon composites (SiOC/nSi) are prepared by mixing of nano-sized silicon, either crystalline (nSi_c) or amorphous (nSi_a), with commercially available polyorganosiloxane RD-684a and subsequent pyrolysis. The influence of the type of nano-silicon, namely crystalline vs. amorphous, on the electrochemical properties and performance is analyzed and correlated with the corresponding composite microstructure. In the case of crystalline nano-silicon, a high reversible capacity of 905 mAh g−1 is registered, whereas that for amorphous nano-silicon embedment reaches 704 mAh g−1. However, regarding the cycling stability, SiOC/nSi_c shows a significant capacity fading upon continuous cycling, related to SiOC matrix failure. The host phase is not able to accommodate the arising mechanical stresses upon Si grain expansion and contraction when alloying/dealloying with Li. SiOC/nSi_a on the contrary, demonstrates a stable cycling performance for up to 100 cycles. This excellent performance is explained by the enhanced matrix integrity of the compound, rationalized by a smaller size of the embedded crystallized Si grains and an intrinsically enhanced electrical conductivity due to the formation of SiC. |
Freie Schlagworte: | Li-ion battery, Anode, Silicon oxycarbide, SiOC, Nano-silicon, Polymer-derived ceramic |
Zusätzliche Informationen: | SFB 595 Cooperation A4, B3 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche Zentrale Einrichtungen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung > Teilprojekt B3: Strukturelle Untersuchungen zur Aufklärung der elektrischen Ermüdung in PZT |
Hinterlegungsdatum: | 18 Jul 2014 09:50 |
Letzte Änderung: | 13 Aug 2021 11:28 |
PPN: | |
Sponsoren: | This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany within the priority program SPP1473/JP8 and the collaborative research center SFB595. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |