TU Darmstadt / ULB / TUbiblio

In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells

Sowinska, Malgorzata ; Bertaud, Thomas ; Walczyk, Damian ; Thiess, Sebastian ; Calka, Pauline ; Alff, Lambert ; Walczyk, Christian ; Schroeder, Thomas (2014)
In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells.
In: Journal of Applied Physics, 115 (20)
doi: 10.1063/1.4879678
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO2 interface chemistry and physics of resistive switching Ti/HfO2/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in the conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO2 interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO2 interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Sowinska, Malgorzata ; Bertaud, Thomas ; Walczyk, Damian ; Thiess, Sebastian ; Calka, Pauline ; Alff, Lambert ; Walczyk, Christian ; Schroeder, Thomas
Art des Eintrags: Bibliographie
Titel: In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells
Sprache: Englisch
Publikationsjahr: 2014
Verlag: AIP Publishing LLC
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 115
(Heft-)Nummer: 20
DOI: 10.1063/1.4879678
Kurzbeschreibung (Abstract):

In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO2 interface chemistry and physics of resistive switching Ti/HfO2/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in the conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO2 interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO2 interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.

Freie Schlagworte: Magnetization reversals, Electrical resistivity, Carbon, Vacancies, Electric currents
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 07 Jul 2014 12:30
Letzte Änderung: 07 Jul 2014 12:30
PPN:
Sponsoren: IHP and TU Darmstadt authors are grateful for financial support by the Deutsche Forschungsgemeinschaft (DFG) under Project No. SCHR1123/7-1., Funding by the Federal Ministry of Education and Research (BMBF) under Contract Nos. 05KS7UM1, 05K10UMA, 05KS7WW3, and 05K10WW1 was gratefully acknowledged., P. Calka is grateful to AvH foundation for granting an AvH PostDoc fellowship.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen