TU Darmstadt / ULB / TUbiblio

Consistent approach to describe and evaluate uncertainty in vibration attenuation using resonant piezoelectric shunting and tuned mass dampers

Götz, Benedict ; Platz, Roland ; Melz, Tobias (2017)
Consistent approach to describe and evaluate uncertainty in vibration attenuation using resonant piezoelectric shunting and tuned mass dampers.
In: Mechanics & Industry, 18 (1)
doi: 10.1051/meca/2016011
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Undesired vibration may occur in lightweight structures due to low damping and excitation. For the purpose of vibration attenuation, tuned mass dampers (TMD) can be an appropriate measure. A similar approach uses resonantly shunted piezoelectric transducers. However, uncertainty in design and application of resonantly shunted piezoelectric transducers and TMD can be caused by insufficient mathematical modeling, geometric and material deviations or deviations in the electrical and mechanical quantities. During operation, uncertainty may result in detuned attenuation systems and loss of attenuation performance. A consistent and general approach to display uncertainty in load carrying systems developed by the authors is applied to describe parametric uncertainty in vibration attenuation with resonantly shunted piezoelectric transducers and TMD. Mathematical models using Hamilton’s principle and Ritz formulation are set up for a beam, clamped at both ends with resonantly shunted transducers and TMD to demonstrate the effectiveness of both attenuation systems and investigate the effects of parametric uncertainty. Furthermore, both approaches lead to additional masses, piezoelectric material for shunt damping and compensator mass of TMD, in the systems. It is shown that vibration attenuation with TMD is less sensitive to parametric uncertainty and achieves a higher performance using the same additional mass.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Götz, Benedict ; Platz, Roland ; Melz, Tobias
Art des Eintrags: Bibliographie
Titel: Consistent approach to describe and evaluate uncertainty in vibration attenuation using resonant piezoelectric shunting and tuned mass dampers
Sprache: Englisch
Publikationsjahr: 2017
Ort: Les Ulis
Verlag: EDP Sciences
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mechanics & Industry
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 1
Kollation: 15 Seiten
Veranstaltungstitel: 2nd International Symposium on Uncertainty Quantification and Stochastic Modeling
Veranstaltungsort: Rouen, France
Veranstaltungsdatum: 23.06.2014-27.06.2014
DOI: 10.1051/meca/2016011
Zugehörige Links:
Kurzbeschreibung (Abstract):

Undesired vibration may occur in lightweight structures due to low damping and excitation. For the purpose of vibration attenuation, tuned mass dampers (TMD) can be an appropriate measure. A similar approach uses resonantly shunted piezoelectric transducers. However, uncertainty in design and application of resonantly shunted piezoelectric transducers and TMD can be caused by insufficient mathematical modeling, geometric and material deviations or deviations in the electrical and mechanical quantities. During operation, uncertainty may result in detuned attenuation systems and loss of attenuation performance. A consistent and general approach to display uncertainty in load carrying systems developed by the authors is applied to describe parametric uncertainty in vibration attenuation with resonantly shunted piezoelectric transducers and TMD. Mathematical models using Hamilton’s principle and Ritz formulation are set up for a beam, clamped at both ends with resonantly shunted transducers and TMD to demonstrate the effectiveness of both attenuation systems and investigate the effects of parametric uncertainty. Furthermore, both approaches lead to additional masses, piezoelectric material for shunt damping and compensator mass of TMD, in the systems. It is shown that vibration attenuation with TMD is less sensitive to parametric uncertainty and achieves a higher performance using the same additional mass.

ID-Nummer: Artikel-ID: 108
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM)
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus
Hinterlegungsdatum: 04 Jul 2014 11:41
Letzte Änderung: 04 Okt 2024 11:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen